login
Square array A(row,col): A(1,col) = A276937(col), and for row > 1, A(row,col) = A003961(A(row-1,col)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
4

%I #12 Sep 26 2016 20:41:07

%S 2,6,3,9,15,5,10,25,35,7,14,21,49,77,11,18,33,55,121,143,13,22,75,65,

%T 91,169,221,17,26,39,245,119,187,289,323,19,30,51,85,847,209,247,361,

%U 437,23,34,105,95,133,1859,299,391,529,667,29,38,57,385,161,253,3757,493,551,841,899,31,42,69,115,1001,319,377,6137,589,713,961,1147,37

%N Square array A(row,col): A(1,col) = A276937(col), and for row > 1, A(row,col) = A003961(A(row-1,col)), read by descending antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.

%C The starting offset is 2 because 1 is not included in the array proper. With it the terms are a permutation of A276078.

%H Antti Karttunen, <a href="/A276941/b276941.txt">Table of n, a(n) for n = 2..1276; the first 50 antidiagonals of array</a>

%F A(1,col) = A276937(col), and for row > 1, A(row,col) = A003961(A(row-1,col)).

%e The top left corner of the array:

%e 2, 6, 9, 10, 14, 18, 22, 26, 30, 34, 38, 42

%e 3, 15, 25, 21, 33, 75, 39, 51, 105, 57, 69, 165

%e 5, 35, 49, 55, 65, 245, 85, 95, 385, 115, 145, 455

%e 7, 77, 121, 91, 119, 847, 133, 161, 1001, 203, 217, 1309

%e 11, 143, 169, 187, 209, 1859, 253, 319, 2431, 341, 407, 2717

%e 13, 221, 289, 247, 299, 3757, 377, 403, 4199, 481, 533, 5083

%e 17, 323, 361, 391, 493, 6137, 527, 629, 7429, 697, 731, 9367

%e 19, 437, 529, 551, 589, 10051, 703, 779, 12673, 817, 893, 13547

%e 23, 667, 841, 713, 851, 19343, 943, 989, 20677, 1081, 1219, 24679

%e 29, 899, 961, 1073, 1189, 27869, 1247, 1363, 33263, 1537, 1711, 36859

%o (Scheme)

%o (define (A276941 n) (A276941bi (A002260 (- n 1)) (A004736 (- n 1))))

%o (define (A276941bi row col) (if (= 1 row) (A276937 col) (A003961 (A276941bi (- row 1) col))))

%Y Transpose: A276942.

%Y Topmost row: A276937, second row: A276938. Leftmost column: A000040.

%Y Cf. A003961.

%Y Cf. A276078 (sorted into ascending order).

%Y Cf. also A276075, A276953.

%K nonn,tabl

%O 2,1

%A _Antti Karttunen_, Sep 25 2016