login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276913 E.g.f. A(x) satisfies: Series_Reversion( A(x)*exp(x) ) = A(x)*exp(-x). 3
1, 0, 3, 0, -35, 0, 6111, 0, -3015207, 0, 3457389595, 0, -7910176435083, 0, 32652618744201015, 0, -225992449753641748943, 0, 2477459751096859267509171, 0, -41090881423264757483386565235, 0, 992851798453466404257942193460239, 0, -33857339246997857308988305386104611575, 0, 1586206583926227307173185697414192414735051, 0, -99763501980273385738989314186327124186627104987, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

It appears that a(6*k+5) = 1 (mod 3) for k>=0 with a(n) = 0 (mod 3) elsewhere.

LINKS

Paul D. Hanna, Table of n, a(n) for n = 1..151

FORMULA

E.g.f. A(x) also satisfies:

(1) A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ).

(2) A( A(x)*exp(-x) ) = x*exp( -A(x)*exp(-x) ).

EXAMPLE

E.g.f.: A(x) = x + 3*x^3/3! - 35*x^5/5! + 6111*x^7/7! - 3015207*x^9/9! + 3457389595*x^11/11! - 7910176435083*x^13/13! + 32652618744201015*x^15/15! - 225992449753641748943*x^17/17! + 2477459751096859267509171*x^19/19! - 41090881423264757483386565235*x^21/21! + 992851798453466404257942193460239*x^23/23! - 33857339246997857308988305386104611575*x^25/25! +...

RELATED SERIES.

By definition, Series_Reversion( A(x)*exp(x) ) = A(x)*exp(-x), where

A(x)*exp(x) = x + 2*x^2/2! + 6*x^3/3! + 16*x^4/4! - 144*x^6/6! + 5488*x^7/7! + 47104*x^8/8! - 2799360*x^9/9! - 29427200*x^10/10! + 3293554176*x^11/11! + 40830142464*x^12/12! - 7642645477376*x^13/13! - 109489995819008*x^14/14! + 31826754503424000*x^15/15! +...+ A193341(n)*x^n/n! +...

A(x)*exp(-x) = x - 2*x^2/2! + 6*x^3/3! - 16*x^4/4! + 144*x^6/6! + 5488*x^7/7! - 47104*x^8/8! - 2799360*x^9/9! +...+ (-1)^(n-1)*A193341(n)*x^n/n! +...

Also, A( A(x)*exp(x) ) = x*exp( A(x)*exp(x) ), where

A( A(x)*exp(x) ) = x + 2*x^2/2! + 9*x^3/3! + 52*x^4/4! + 325*x^5/5! + 2046*x^6/6! + 14749*x^7/7! + 166664*x^8/8! + 1855305*x^9/9! - 8673830*x^10/10! - 380002799*x^11/11! + 33613835388*x^12/12! + 913029698893*x^13/13! - 91462474379626*x^14/14! - 2893000394547675*x^15/15! + 452208618208709776*x^16/16! +...

exp( A(x)*exp(x) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 65*x^4/4! + 341*x^5/5! + 2107*x^6/6! + 20833*x^7/7! + 206145*x^8/8! - 867383*x^9/9! - 34545709*x^10/10! + 2801152949*x^11/11! + 70233053761*x^12/12! - 6533033884259*x^13/13! - 192866692969845*x^14/14! + 28263038638044361*x^15/15! +...

Also,

A'( A(x)*exp(-x) ) * exp( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x, or

x*A'( A(x)*exp(-x) ) / A( A(x)*exp(-x) ) = exp(x)/(A'(x) - A(x)) - x.

The series reversion begins:

Series_Reversion( A(x) ) = x - 3*x^3/3! + 125*x^5/5! - 19551*x^7/7! + 8072217*x^9/9! - 7563307675*x^11/11! + 14604702539349*x^13/13! - 53272560312696375*x^15/15! + 338351296939319691953*x^17/17! +...

PROG

(PARI) {a(n) = my(A = x +x*O(x^n)); for(i=1, n, A = A + (x - subst(A*exp(x +x*O(x^n)), x, A*exp(-x +x*O(x^n))))/2); n!*polcoeff(A, n)}

for(n=1, 31, print1(a(n), ", "))

CROSSREFS

Cf. A276909, A276908, A276912, A193341.

Sequence in context: A145222 A058833 A266168 * A012775 A157308 A157310

Adjacent sequences:  A276910 A276911 A276912 * A276914 A276915 A276916

KEYWORD

sign

AUTHOR

Paul D. Hanna, Oct 01 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:24 EDT 2019. Contains 323467 sequences. (Running on oeis4.)