login
Sums-complement of the Beatty sequence for sqrt(2) + sqrt(3).
3

%I #4 Oct 02 2016 00:37:00

%S 1,2,5,8,11,14,17,20,21,24,27,30,33,36,39,42,43,46,49,52,55,58,61,64,

%T 65,68,71,74,77,80,83,86,87,90,93,96,99,102,105,108,109,112,115,118,

%U 121,124,127,130,131,134,137,140,143,146,149,150,153,156,159,162

%N Sums-complement of the Beatty sequence for sqrt(2) + sqrt(3).

%C See A276871 for a definition of sums-complement and guide to related sequences.

%H <a href="/index/Be#Beatty">Index entries for sequences related to Beatty sequences</a>

%e The Beatty sequence for sqrt(2) + sqrt(3) is A110117 = (0,3,6,9,12,15,18,22,...), with difference sequence s = A276870 = (3,3,3,3,3,3,4,3,3,3,3,3,3,4,3,...). The sums s(j)+s(j+1)+...+s(k) include (3,4,6,7,9,10,...), with complement (1,2,5,8,11,14,17,20,21,...).

%t z = 500; r = Sqrt[2] + Sqrt[3]; b = Table[Floor[k*r], {k, 0, z}]; (* A110117 *)

%t t = Differences[b]; (* A276870 *)

%t c[k_, n_] := Sum[t[[i]], {i, n, n + k - 1}];

%t u[k_] := Union[Table[c[k, n], {n, 1, z - k + 1}]];

%t w = Flatten[Table[u[k], {k, 1, z}]]; Complement[Range[Max[w]], w]; (* A276889 *)

%Y Cf. A110117, A276870, A276871.

%K nonn,easy

%O 1,2

%A _Clark Kimberling_, Oct 01 2016