%I #21 Aug 21 2023 10:22:41
%S 3,3,8,2,9,7,5,7,6,7,9,0,6,2,3,7,4,9,4,1,2,2,7,0,8,5,3,6,4,5,5,0,3,4,
%T 5,8,6,9,4,9,3,8,2,0,4,3,7,4,8,5,7,6,1,8,2,0,1,9,5,6,2,6,7,7,2,3,5,3,
%U 7,1,8,9,6,0,0,9,9,4,0,2,9,2,2,2,3,5,9,3,3,3,4,0,0,4,3,6,6,1,3,9,6,0,4,1,0,0,6
%N Decimal expansion of t^2, where t is the tribonacci constant A058265.
%C The minimal polynomial of this constant is x^3 - 3*x^2 - x - 1, and it is its unique real root. - _Amiram Eldar_, May 27 2023
%H <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a>
%e 3.38297576790623749412270853645503458694938204374857618201956267723537...
%t A276800L[n_] := RealDigits[(1/3 (1 + (19 - 3 Sqrt[33])^(1/3) + (19 + 3 Sqrt[33])^(1/3)))^2, 10, n][[1]]; A276800L[107] (* _JungHwan Min_, Nov 06 2016 *)
%t RealDigits[x /. FindRoot[x^3 - 3*x^2 - x - 1, {x, 3}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, May 27 2023 *)
%o (PARI) polrootsreal(x^3-3*x^2-x-1)[1] \\ _Charles R Greathouse IV_, Aug 21 2023
%Y Cf. A058265, A276799, A276801.
%K nonn,cons
%O 1,1
%A _N. J. A. Sloane_, Oct 28 2016