

A276797


Partial sums of A276794.


11



0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,7


COMMENTS

a(n+1) = z_A(n), the number of entries of A278040 (called A number in the W. Lang given there) not exceeding n, for n >= 1 and z_A(1) := 0.  Wolfdieter Lang, Dec 06 2018
Conjecture: A140102(n)  n = a(n1).  N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true  see the Dekking et al. paper.  N. J. A. Sloane, Jul 22 2019


LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: nonattacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.


FORMULA

a(n) = Sum_{k=0..n} A276794(k).
a(n) = n + 1  (A276796(n) + A276798(n)).
a(n) = 2*B(n)  A(n) + 1, for n >= 0, where A(n) = A278040(n) and B(n) = A278039(n). For a proof see the W. Lang link in A278040, Proposition 7, eq. (41).  Wolfdieter Lang, Dec 06 2018


MAPLE

M:=12;
S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;
for n from 4 to M do S[n]:=cat(S[n1], S[n2], S[n3]); od:
t0:=S[M]: # has 927 terms of tribonacci ternary word A080843
# get numbers of 0's, 1's, 2's
N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:
L:=length(t0);
for i from 1 to L do
js := substring(t0, i..i);
j:=convert(js, decimal, 10);
if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;
N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];
od:
N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018


CROSSREFS

Cf. A003145, A140102, A276794, A278039, A278040.
A276793(n) + A276794(n) + A276791(n) = 1;
A276796(n) + A276797(n) + A276798(n) = n + 1.
Sequence in context: A025786 A085886 A088676 * A166872 A283480 A189575
Adjacent sequences: A276794 A276795 A276796 * A276798 A276799 A276800


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Oct 28 2016


STATUS

approved



