login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276797 Partial sums of A276794. 11
0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

a(n+1) = z_A(n), the number of entries of A278040 (called A number in the W. Lang given there) not exceeding n, for n >= 1 and z_A(-1) := 0. - Wolfdieter Lang, Dec 06 2018

Conjecture: A140102(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000

F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, arXiv:1907.09120, July 2019

Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.

FORMULA

a(n) = Sum_{k=0..n} A276794(k).

a(n) = n + 1 - (A276796(n) +  A276798(n)).

a(n) = 2*B(n) - A(n) + 1, for n >= 0, where A(n) = A278040(n) and B(n) = A278039(n). For a proof see the W. Lang link in A278040, Proposition 7, eq. (41). - Wolfdieter Lang, Dec 06 2018

MAPLE

M:=12;

S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;

for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:

t0:=S[M]: # has 927 terms of tribonacci ternary word A080843

# get numbers of 0's, 1's, 2's

N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:

L:=length(t0);

for i from 1 to L do

js := substring(t0, i..i);

j:=convert(js, decimal, 10);

if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;

N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];

od:

N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018

CROSSREFS

Cf. A003145, A140102, A276794, A278039, A278040.

A276793(n) + A276794(n) + A276791(n) = 1;

A276796(n) + A276797(n) + A276798(n) = n + 1.

Sequence in context: A025786 A085886 A088676 * A166872 A283480 A189575

Adjacent sequences:  A276794 A276795 A276796 * A276798 A276799 A276800

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 22 07:40 EDT 2019. Contains 326172 sequences. (Running on oeis4.)