The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276797 Partial sums of A276794. 11
 0, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 24, 24, 25 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 COMMENTS a(n+1) = z_A(n), the number of entries of A278040 (called A number in the W. Lang given there) not exceeding n, for n >= 1 and z_A(-1) := 0. - Wolfdieter Lang, Dec 06 2018 Conjecture: A140102(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true - see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019 LINKS N. J. A. Sloane, Table of n, a(n) for n = 0..10000 F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52. Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018. FORMULA a(n) = Sum_{k=0..n} A276794(k). a(n) = n + 1 - (A276796(n) +  A276798(n)). a(n) = 2*B(n) - A(n) + 1, for n >= 0, where A(n) = A278040(n) and B(n) = A278039(n). For a proof see the W. Lang link in A278040, Proposition 7, eq. (41). - Wolfdieter Lang, Dec 06 2018 MAPLE M:=12; S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`; for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od: t0:=S[M]: # has 927 terms of tribonacci ternary word A080843 # get numbers of 0's, 1's, 2's N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0: L:=length(t0); for i from 1 to L do js := substring(t0, i..i); j:=convert(js, decimal, 10); if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi; N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2]; od: N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018 CROSSREFS Cf. A003145, A140102, A276794, A278039, A278040. A276793(n) + A276794(n) + A276791(n) = 1; A276796(n) + A276797(n) + A276798(n) = n + 1. Sequence in context: A025786 A085886 A088676 * A166872 A283480 A189575 Adjacent sequences:  A276794 A276795 A276796 * A276798 A276799 A276800 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Oct 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 21:35 EDT 2020. Contains 337322 sequences. (Running on oeis4.)