login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276796 Partial sums of A276793. 10
0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 27, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 42, 42, 43, 43, 44 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n+1) = z_B(n), the number of B numbers A278039 not exceeding n. - Wolfdieter Lang, Dec 05 2018

Conjecture: A140100(n) - n = a(n-1). - N. J. A. Sloane, Oct 26 2016 (added Mar 21 2019). This is true: see the Dekking et al. paper. - N. J. A. Sloane, Jul 22 2019

LINKS

N. J. A. Sloane, Table of n, a(n) for n = 0..10000

F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.

Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.

FORMULA

a(n) = Sum_{k=0..n} A276793(k), n >= 0.

a(n) = n + 1 - (A276797(n) + A276798(n)).

a(n) = A(n) - B(n) - (n + 1), where A(n) = A278040(n) and B(n) = A278039(n), n >= 0. For a proof see the W. Lang link in A278040, Proposition 7, eq. (42). - Wolfdieter Lang, Dec 05 2018

MAPLE

M:=12;

S[1]:=`0`; S[2]:=`01`; S[3]:=`0102`;

for n from 4 to M do S[n]:=cat(S[n-1], S[n-2], S[n-3]); od:

t0:=S[M]: # has 927 terms of tribonacci ternary word A080843

# get numbers of 0's, 1's, 2's

N0:=[]: N1:=[]: N2:=[]: c0:=0: c1:=0: c2:=0:

L:=length(t0);

for i from 1 to L do

js := substring(t0, i..i);

j:=convert(js, decimal, 10);

if j=0 then c0:=c0+1; elif j=1 then c1:=c1+1; else c2:=c2+1; fi;

N0:=[op(N0), c0]; N1:=[op(N1), c1]; N2:=[op(N2), c2];

od:

N0; N1; N2; # prints A276796, A276797, A276798 (except A276798 is off by 1 because it does not count the initial 0 in A003146). # N. J. A. Sloane, Jun 08 2018

CROSSREFS

Cf. A003144, A140100, A276793 (first differences), A278039, A278040.

A276793(n) + A276794(n) + A276791(n) = 1;

A276796(n) + A276797(n) + A276798(n) = n + 1.

Sequence in context: A238884 A066683 A055038 * A309093 A085268 A214656

Adjacent sequences:  A276793 A276794 A276795 * A276797 A276798 A276799

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Oct 28 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 21:01 EDT 2020. Contains 337321 sequences. (Running on oeis4.)