%I #11 Sep 19 2016 11:20:46
%S 1,1,1,1,2,1,1,3,3,6,1,4,6,19,27,1,5,10,47,131,472,1,6,16,103,497,
%T 3253,19735,1,7,23,203,1606,18435,221778,2773763,1,8,32,373,4647,
%U 91028,2074059,51107344,1245930065
%N The triangle in A039754 but with rows truncated at k = n.
%C See A039754 for further information.
%H Jan Brandts, A. Cihangir, <a href="http://arxiv.org/abs/1512.03044">Enumeration and investigation of acute 0/1-simplices modulo the action of the hyperoctahedral group</a>, arXiv preprint arXiv:1512.03044 [math.CO], 2015.
%H H. Fripertinger, <a href="http://dx.doi.org/10.1023/A:1008248618779">Enumeration, construction and random generation of block codes</a>, Designs, Codes, Crypt., 14 (1998), 213-219.
%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry Classes of Codes</a>
%e Triangle begins:
%e 1,
%e 1,1,
%e 1,2,1,
%e 1,3,3,6,
%e 1,4,6,19,27,
%e 1,5,10,47,131,472,
%e 1,6,16,103,497,3253,19735,
%e 1,7,23,203,1606,18435,221778,2773763,
%e 1,8,32,373,4647,91028,2074059,51107344,1245930065,
%e ...
%Y Cf. A039754.
%K nonn,tabl
%O 0,5
%A _N. J. A. Sloane_, Sep 17 2016