login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276753
L.g.f.: Sum_{n>=1} [ Sum_{k>=1} k^(2*n-1) * x^k ]^n / n.
3
1, 5, 34, 381, 8401, 334688, 27151993, 4091831133, 1251353635162, 737891198902325, 864695662715974585, 2033353960345783330704, 9255876152303901497918425, 87365856252845525476020365429, 1563265999862817889675899566032954, 59157049408983740505063226640565220029, 4200428372739940183291465697348398947046393, 634544126271277747190512917479290795324884131840
OFFSET
1,2
COMMENTS
L.g.f. equals the logarithm of the g.f. of A276751.
LINKS
FORMULA
L.g.f.: Sum_{n>=1} [ Sum_{k=1..2*n-1} A008292(2*n-1,k) * x^k / (1-x)^(2*n) ]^n / n, where A008292 are the Eulerian numbers.
EXAMPLE
L.g.f.: A(x) = x + 5*x^2/2 + 34*x^3/3 + 381*x^4/4 + 8401*x^5/5 + 334688*x^6/6 + 27151993*x^7/7 + 4091831133*x^8/8 + 1251353635162*x^9/9 + 737891198902325*x^10/10 +...
such that A(x) equals the series:
A(x) = Sum_{n>=1} (x + 2^(2*n-1)*x^2 + 3^(2*n-1)*x^3 +...+ k^(2*n-1)*x^k +...)^n/n.
This logarithmic series can be written using the Eulerian numbers like so:
A(x) = x/(1-x)^2 + (x + 4*x^2 + x^3)^2/(1-x)^8/2 + (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^3/(1-x)^18/3 + (x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7)^4/(1-x)^32/4 + (x + 502*x^2 + 14608*x^3 + 88234*x^4 + 156190*x^5 + 88234*x^6 + 14608*x^7 + 502*x^8 + x^9)^5/(1-x)^50/5 + (x + 2036*x^2 + 152637*x^3 + 2203488*x^4 + 9738114*x^5 + 15724248*x^6 + 9738114*x^7 + 2203488*x^8 + 152637*x^9 + 2036*x^10 + x^11)^6/(1-x)^72/6 +...+ [ Sum_{k=1..2*n-1} A008292(2*n-1,k) * x^k ]^n / (1-x)^(2*n^2) /n +...
where
exp(A(x)) = 1 + x + 3*x^2 + 14*x^3 + 111*x^4 + 1813*x^5 + 57846*x^6 + 3941129*x^7 + 515554887*x^8 + 139563384274*x^9 + 73929755773659*x^10 +...+ A276751(n)*x^n +...
PROG
(PARI) {a(n) = n * polcoeff( sum(m=1, n, sum(k=1, n, k^(2*m-1)*x^k +x*O(x^n))^m/m ), n)}
for(n=1, 20, print1(a(n), ", "))
(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
{a(n) = my(A=1, Oxn=x*O(x^n)); A = sum(m=1, n+1, sum(k=1, 2*m-1, A008292(2*m-1, k)*x^k/(1-x +Oxn)^(2*m) )^m / m ); n * polcoeff(A, n)}
for(n=1, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2016
STATUS
approved