login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276747 G.f.: Sum_{n>=0} (1-x)^(n*(n+1)) * [ Sum_{k>=1} k^n * x^k ]^n. 2
1, 1, 1, 3, 14, 96, 989, 14264, 293081, 8291372, 326486284, 17606371379, 1311003529532, 133789640100606, 18842361596022104, 3651812223033372781, 979595054829206809506, 363619011980801177687068, 187594865162514096249150130, 134684579087971548803896902904, 134956937109764143572996094860839, 189135846049140695927044178145555683, 371258683769470709816610430835777163052 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..200

FORMULA

G.f.: Sum_{n>=0} [ Sum_{k=1..n} A008292(n,k) * x^k ]^n, where A008292 are the Eulerian numbers.

EXAMPLE

G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 14*x^4 + 96*x^5 + 989*x^6 + 14264*x^7 + 293081*x^8 + 8291372*x^9 + 326486284*x^10 + 17606371379*x^11 +...

such that

A(x) = Sum_{n>=0} (1-x)^(n*(n+1)) * (x + 2^n*x^2 + 3^n*x^3 +...+ k^n*x^k +...)^n.

Explicitly,

A(x) = 1 + (1-x)^2 * (x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 +...) +

(1-x)^6 * (x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 +...)^2 +

(1-x)^12 * (x + 8*x^2 + 27*x^3 + 64*x^4 + 125*x^5 + 216*x^6 +...)^3 +

(1-x)^20 * (x + 16*x^2 + 81*x^3 + 256*x^4 + 625*x^5 + 1296*x^6 +...)^4 +

(1-x)^30 * (x + 32*x^2 + 243*x^3 + 1024*x^4 + 3125*x^5 + 7776*x^6 +...)^5 +

...

The g.f. can be written using the Eulerian numbers like so:

A(x) = 1 + x + (x + x^2)^2 + (x + 4*x^2 + x^3)^3 + (x + 11*x^2 + 11*x^3 + x^4)^4 + (x + 26*x^2 + 66*x^3 + 26*x^4 + x^5)^5 + (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)^6 + (x + 120*x^2 + 1191*x^3 + 2416*x^4 + 1191*x^5 + 120*x^6 + x^7)^7 + (x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)^8 +...+ [ Sum_{k=1..n} A008292(n,k) * x^k ]^n +...

PROG

(PARI) {a(n) = my(A=1); A = sum(m=0, n+1, (1-x +x*O(x^n))^(m*(m+1)) * sum(k=1, n+1, k^m*x^k +x*O(x^n))^m ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

(PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}

{a(n) = my(A=1, Oxn=x*O(x^n)); A = sum(m=0, n+1, sum(k=1, m, A008292(m, k)*x^k +Oxn )^m ); polcoeff(A, n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A276743, A276746, A008292.

Sequence in context: A295109 A295110 A136461 * A007470 A306986 A074515

Adjacent sequences:  A276744 A276745 A276746 * A276748 A276749 A276750

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Sep 30 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 13 16:50 EDT 2019. Contains 327968 sequences. (Running on oeis4.)