%I #13 Dec 26 2018 15:02:10
%S 1,1,2,5,15,52,203,877,3263,11155,36810,120635,398736,1340561,4605989,
%T 15908448,54826671,188085307,642431001,2188102307,7446095610,
%U 25366540627,86531467800,295449388797,1009134603216,3446558809107,11767813404774,40167156826109
%N Number of set partitions of [n] such that for each block b the smallest integer interval containing b has at most seven elements.
%H Alois P. Heinz, <a href="/A276723/b276723.txt">Table of n, a(n) for n = 0..1000</a>
%H Pierpaolo Natalini, Paolo Emilio Ricci, <a href="https://doi.org/10.3390/axioms7040071">New Bell-Sheffer Polynomial Sets</a>, Axioms 2018, 7(4), 71.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>
%F G.f.: -(x^52 +2*x^50 -9*x^49 +5*x^48 +93*x^47 -46*x^46 -18*x^45 -439*x^44 +166*x^43 +919*x^42 -369*x^41 +1431*x^40 -2154*x^39 +1497*x^38 +2366*x^37 +7382*x^36 +4861*x^35 +3348*x^34 -12721*x^33 +1916*x^32 -7481*x^31 +8799*x^30 +8061*x^29 +10105*x^28 -8760*x^27 +3274*x^26 -9925*x^25 -873*x^24 +8803*x^23 +13626*x^22 -2818*x^21 +2263*x^20 +3291*x^19 -5707*x^18 -3550*x^17 -4115*x^16 -2399*x^15 -2475*x^14 -877*x^13 +461*x^12 +130*x^11 +226*x^10 +182*x^9 +243*x^8 +161*x^7 -4*x^6 +21*x^5 +14*x^4 +5*x^3 +2*x^2 -1) / (x^64 +6*x^63 +3*x^62 -2*x^61 -24*x^60 +7*x^59 +981*x^58 +2410*x^57 +1066*x^56 -2882*x^55 -8931*x^54 -2882*x^53 -4007*x^52 -30225*x^51 -9863*x^50 +20863*x^49 +101214*x^48 +127153*x^47 +158805*x^46 +285147*x^45 +101665*x^44 -513829*x^43 -895778*x^42 -800589*x^41 -572933*x^40 +290605*x^39 +232843*x^38 -841969*x^37 -1610201*x^36 -1642130*x^35 -1731114*x^34 -642745*x^33 +245579*x^32 -62183*x^31 -769603*x^30 -803729*x^29 -905469*x^28 -727539*x^27 -323095*x^26 -229154*x^25 -442563*x^24 -447061*x^23 -251676*x^22 -41018*x^21 -74736*x^20 -74741*x^19 +35465*x^18 +81095*x^17 +72575*x^16 +39983*x^15 +23409*x^14 +14506*x^13 +3868*x^12 -628*x^11 -1927*x^10 -1426*x^9 -935*x^8 -468*x^7 -31*x^6 -20*x^5 -13*x^4 -5*x^3 -3*x^2 -x +1).
%Y Column k=7 of A276719.
%Y Cf. A276841, A276897.
%K nonn,easy
%O 0,3
%A _Alois P. Heinz_, Sep 16 2016