login
a(n) = a(n-2)*a(n-3) - a(n-1); a(0) = 3, a(1) = 5, a(2) = 7.
1

%I #21 May 27 2020 13:00:12

%S 3,5,7,8,27,29,187,596,4827,106625,2770267,511908608,294867810267,

%T 1417828655948069,150943952469132130267,418071880169258361764894156,

%U 214012660834726939177944668730210267,63105422008735225121538219609433904551328809385

%N a(n) = a(n-2)*a(n-3) - a(n-1); a(0) = 3, a(1) = 5, a(2) = 7.

%H Harvey P. Dale, <a href="/A276693/b276693.txt">Table of n, a(n) for n = 0..27</a>

%F a(n) ~ c^(d^n), where c = 2.46982021132238000769..., d = A060006 = (1/2+sqrt(23/108))^(1/3) + (1/2-sqrt(23/108))^(1/3) = 1.32471795724474602596..., real root of the equation d*(d^2-1) = 1. - _Vaclav Kotesovec_, Oct 04 2016

%t RecurrenceTable[{a[n] == a[n-2]*a[n-3]-a[n-1], a[0] == 3,a[1]==5,a[2]==7}, a, {n,0, 17}]

%t nxt[{a_,b_,c_}]:={b,c,a*b-c}; NestList[nxt,{3,5,7},20][[All,1]] (* _Harvey P. Dale_, May 27 2020 *)

%o (C) int seq(int n) {int v = 3; if(n <= 2) {v = 3+2*n;} else {v = seq(n-2)*seq(n-3) - seq(n-1);} return v;}

%K nonn

%O 0,1

%A _Christopher C. Capobianco_, Sep 13 2016