login
Numbers k such that (19*10^k + 101) / 3 is prime.
0

%I #30 Jun 02 2024 14:03:53

%S 1,3,4,9,10,12,13,16,20,37,57,66,106,116,127,355,396,547,2289,3777,

%T 4500,7821,15663,22746,25978,30434,39682,119716,133390,145093,200260

%N Numbers k such that (19*10^k + 101) / 3 is prime.

%C For k > 1, numbers k such that the digit 6 followed by k-2 occurrences of the digit 3 followed by the digits 67 is prime (see Example section).

%C a(32) > 3*10^5. - _Robert Price_, Jul 13 2023

%H Makoto Kamada, <a href="https://stdkmd.net/nrr">Factorization of near-repdigit-related numbers</a>.

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/prime/prime_difficulty.txt">Search for 63w67</a>.

%e 3 is in this sequence because (19*10^3 + 101) / 3 = 6367 is prime.

%e Initial terms and associated primes:

%e a(1) = 1, 97;

%e a(2) = 3, 6367;

%e a(3) = 4, 63367;

%e a(4) = 9, 6333333367;

%e a(5) = 10, 63333333367, etc.

%t Select[Range[0, 100000], PrimeQ[(19*10^# + 101) / 3] &]

%o (Magma) [n: n in [0..400] |IsPrime((19*10^n + 101) div 3)]; // _Vincenzo Librandi_, Sep 13 2016

%o (PARI) is(n)=ispseudoprime((19*10^n + 101)/3) \\ _Charles R Greathouse IV_, Jun 13 2017

%Y Cf. A056654, A268448, A269303, A270339, A270613, A270831, A270890, A270929, A271269.

%K nonn,more

%O 1,2

%A _Robert Price_, Sep 12 2016

%E a(28)-a(30) from _Robert Price_, Sep 01 2019

%E a(31) from _Robert Price_, Jul 13 2023