%I
%S 2,21,2905,281785,47740490
%N a(n) = the smallest number k>1 such that floor(Sum_{pk} 0.p) = n where p runs through the prime divisors of k.
%C Here 0.p means the decimal fraction obtained by writing p after the decimal point, e.g. 0.11 = 11/100.
%C The first few values of Sum_{pn} 0.p are: 1/5, 3/10, 1/5, 1/2, 1/2, 7/10, 1/5, 3/10, 7/10, ...
%C Subsequence of A005117.  _Chai Wah Wu_, Sep 15 2016
%e Number 2905 is the smallest number k with floor(Sum_{pk} 0.p) = 2; set of prime divisors of 2905: {5, 7, 83}; floor(Sum_{p2905} 0.p) = 0.5 + 0.7 + 0.83 = floor(2.03) = 2.
%o (MAGMA) A276654:=func<nexists(r){k:k in[2..1000000]  Floor(&+[d / (10^(#Intseq(d))): d in PrimeDivisors(k)]) eq n}select r else 0>; [A276654(n): n in[0..3]]
%Y Cf. A005117, A276513, A276651, A276652, A276653, A276655.
%K nonn,base,more
%O 0,1
%A _Jaroslav Krizek_, Sep 11 2016
%E a(4) from _Michel Marcus_, Sep 11 2016
