OFFSET
2
COMMENTS
Here 0.p means the decimal fraction obtained by writing p after the decimal point, e.g., 0.11 = 11/100.
See A276654(n) = the smallest number k>1 such that floor(Sum_{p|k} 0.p) = n where p runs through the prime divisors of k.
LINKS
Jaroslav Krizek, Table of n, a(n) for n = 2..1000
EXAMPLE
For n = 35: floor(Sum_{p|35} 0.p) = floor(0.5 + 0.7) = floor(1.2) = 1.
MATHEMATICA
Table[Floor@ Total[# 10^(-Floor@ Log10@ # - 1) &@ FactorInteger[n][[All, 1]]], {n, 2, 120}] (* Michael De Vlieger, Sep 12 2016 *)
PROG
(Magma) [Floor(&+[d/(10^(#Intseq(d))): d in PrimeDivisors(n)]): n in [2..1000]]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jaroslav Krizek, Sep 11 2016
STATUS
approved