This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276529 a(n) = (a(n-1) * a(n-5) + 1) / a(n-6), a(0) = a(1) = ... = a(5) = 1. 2
 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 20, 27, 34, 41, 89, 137, 185, 233, 281, 610, 939, 1268, 1597, 1926, 4181, 6436, 8691, 10946, 13201, 28657, 44113, 59569, 75025, 90481, 196418, 302355, 408292, 514229, 620166, 1346269, 2072372, 2798475, 3524578, 4250681, 9227465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,7 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..5985 Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,7,0,0,0,0,-1). FORMULA a(n) + a(n+10) = 7*a(n+5). a(5-n) = a(n). G.f.: (1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9) / (1 -7*x^5 +x^10). - Colin Barker, Nov 16 2016 MATHEMATICA LinearRecurrence[{0, 0, 0, 0, 7, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 2, 3, 4, 5}, 50] (* G. C. Greubel, Nov 18 2016 *) PROG (Ruby) def A(k, m, n)   a = Array.new(2 * k, 1)   ary = [1]   while ary.size < n + 1     i = a[-1] * a[1] + a[k] ** m     break if i % a[0] > 0     a = *a[1..-1], i / a[0]     ary << a[0]   end   ary end def A276529(n)   A(3, 0, n) end (PARI) Vec((1 +x +x^2 +x^3 +x^4 -6*x^5 -5*x^6 -4*x^7 -3*x^8 -2*x^9)/(1 -7*x^5 +x^10) + O(x^50)) \\ Colin Barker, Nov 16 2016 CROSSREFS Cf. A275173, A102276, A276530. Sequence in context: A300857 A255261 A181303 * A200330 A121433 A317778 Adjacent sequences:  A276526 A276527 A276528 * A276530 A276531 A276532 KEYWORD nonn,easy AUTHOR Seiichi Manyama, Nov 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 20:50 EDT 2019. Contains 324145 sequences. (Running on oeis4.)