login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276459 Nested radical expansion of Pi: Pi = sqrt(a(1) + sqrt(a(2) + sqrt(a(3) + sqrt(a(4) + ...)))), with a(1) = 7 and 2 <= a(n) <= 6 for n>1. 2
7, 6, 2, 6, 6, 5, 5, 2, 4, 6, 3, 4, 2, 4, 6, 3, 6, 3, 3, 5, 4, 3, 6, 3, 3, 3, 4, 3, 6, 6, 4, 3, 3, 4, 5, 5, 2, 6, 2, 5, 4, 3, 4, 6, 6, 2, 3, 5, 2, 3, 5, 4, 2, 3, 2, 4, 2, 6, 4, 6, 3, 3, 4, 3, 4, 6, 3, 4, 6, 5, 2, 2, 2, 3, 4, 5, 5, 5, 2, 4, 3, 6, 4, 3, 6, 3, 2, 6, 2, 4, 5, 6, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 4, 4, 6, 4, 2, 4, 5, 4, 6, 5, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Similar to Bolyai expansion. Uses the fact that for 0<p<1, 2<(2+p)^2-2<7.

LINKS

Yuriy Sibirmovsky, Table of n, a(n) for n = 1..250

Eric Weisstein's World of Mathematics, Bolyai Expansion.

EXAMPLE

Pi^2=7+2+p1, thus a(1)=7;

(2+p1)^2=6+2+p2, thus a(2)=6;

(2+p2)^2=2+2+p3, thus a(3)=2; ... 0<pn<1.

MATHEMATICA

Nm=100;

A=Table[1, {j, 1, Nm}];

V=Table[1, {j, 1, Nm}];

P=Pi;

p0=P;

Do[p1=Floor[p0^2]-2;

A[[j]]=p1;

p0=N[2+p0^2-Floor[p0^2], 300], {j, 1, Nm}];

Do[v0=Sqrt[A[[n]]];

Do[v1=A[[n-j]]+v0;

v0=Sqrt[v1], {j, 1, n-1}];

V[[n]]=v0, {n, 1, Nm}];

A

CROSSREFS

Cf. A000796 (digits), A001203 (continued fraction).

Sequence in context: A258010 A011102 A068469 * A181152 A244920 A073011

Adjacent sequences:  A276456 A276457 A276458 * A276460 A276461 A276462

KEYWORD

nonn

AUTHOR

Yuriy Sibirmovsky, Sep 03 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 22 08:43 EST 2018. Contains 298042 sequences.