login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276429 Number of partitions of n containing no part i of multiplicity i. 15
1, 0, 2, 2, 3, 5, 8, 9, 16, 19, 29, 36, 53, 65, 92, 115, 154, 195, 257, 318, 419, 516, 663, 821, 1039, 1277, 1606, 1963, 2441, 2978, 3675, 4454, 5469, 6603, 8043, 9688, 11732, 14066, 16963, 20260, 24310, 28953, 34586, 41047, 48857, 57802, 68528, 80862, 95534, 112388, 132391 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The Heinz numbers of these partitions are given by A325130. - Gus Wiseman, Apr 02 2019

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..12782 (terms 0..5000 from Alois P. Heinz)

FORMULA

a(n) = A276427(n,0).

G.f.: g(x) = Product_{i>=1} (1/(1-x^i) - x^{i^2}).

EXAMPLE

a(4) = 3 because we have [1,1,1,1], [1,1,2], and [4]; the partitions [1,3], [2,2] do not qualify.

From Gus Wiseman, Apr 02 2019: (Start)

The a(2) = 2 through a(7) = 9 partitions:

  (2)   (3)    (4)     (5)      (6)       (7)

  (11)  (111)  (211)   (32)     (33)      (43)

               (1111)  (311)    (42)      (52)

                       (2111)   (222)     (511)

                       (11111)  (411)     (3211)

                                (3111)    (4111)

                                (21111)   (31111)

                                (111111)  (211111)

                                          (1111111)

(End)

MAPLE

g := product(1/(1-x^i)-x^(i^2), i = 1 .. 100): gser := series(g, x = 0, 53): seq(coeff(gser, x, n), n = 0 .. 50);

# second Maple program:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,

      add(`if`(i=j, 0, b(n-i*j, i-1)), j=0..n/i)))

    end:

a:= n-> b(n$2):

seq(a(n), n=0..60);  # Alois P. Heinz, Sep 19 2016

MATHEMATICA

b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[If[i == j, x, 1]*b[n - i*j, i - 1], {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[T[n][[1]], {n, 0, 60}] (* Jean-Fran├žois Alcover, Nov 28 2016 after Alois P. Heinz's Maple code for A276427 *)

Table[Length[Select[IntegerPartitions[n], And@@Table[Count[#, i]!=i, {i, Union[#]}]&]], {n, 0, 30}] (* Gus Wiseman, Apr 02 2019 *)

CROSSREFS

Cf. A052335, A087153, A114639, A115584, A117144, A276427, A324572, A325130, A325131.

Sequence in context: A114990 A241421 A157176 * A111181 A267419 A076777

Adjacent sequences:  A276426 A276427 A276428 * A276430 A276431 A276432

KEYWORD

nonn

AUTHOR

Emeric Deutsch, Sep 19 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 17:13 EDT 2019. Contains 328186 sequences. (Running on oeis4.)