OFFSET
0,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2000
FORMULA
G.f.: g(x) = 2x^2*(1+x^2+x^4)/((1-x^4)^2 product(1-x^j, j>=1)).
a(n) = Sum(k*A276424(n,k), k>=0).
EXAMPLE
a(4) = 6 because in the partitions [1,1,1,1], [1,1,2], [2,2], [1,3], [4] the sums of the even singletons are 0, 2, 0, 0, 4, respectively; their sum is 6.
a(5) = 8 because in the partitions [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5] the sums of the even singletons are 0, 2, 0, 0, 2, 4, 0 respectively; their sum is 8.
MAPLE
g := 2*x^2*(1+x^2+x^4)/((1-x^4)^2*(product(1-x^i, i = 1 .. 120))): gser := series(g, x = 0, 60): seq(coeff(gser, x, n), n = 0 .. 50);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0],
`if`(i<1, 0, add((p-> p+`if`(i::even and j=1,
[0, i*p[1]], 0))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Sep 14 2016
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, 0, Sum[Function[p, p + If[EvenQ[i] && j == 1, {0, i*p[[1]]}, 0]][b[n-i*j, i-1]], {j, 0, n/i}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 24 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Sep 14 2016
STATUS
approved