login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276289 Expansion of x*(1 + x)/(1 - 2*x)^3. 1
0, 1, 7, 30, 104, 320, 912, 2464, 6400, 16128, 39680, 95744, 227328, 532480, 1232896, 2826240, 6422528, 14483456, 32440320, 72220672, 159907840, 352321536, 772800512, 1688207360, 3674210304, 7969177600, 17230200832, 37144756224, 79859548160, 171261820928, 366414397440 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Binomial transform of pentagonal numbers (A000326).

More generally, the binomial transform of k-gonal numbers is n*Hypergeometric2F1(k/(k-2),1-n;2/(k-2);-1), where Hypergeometric2F1(a,b;c;x) is the hypergeometric function.

LINKS

Table of n, a(n) for n=0..30.

Eric Weisstein's World of Mathematics, Pentagonal Number

Index entries for linear recurrences with constant coefficients, signature (6,-12,8)

FORMULA

O.g.f.: x*(1 + x)/(1 - 2*x)^3.

E.g.f.: x*(2 + 3*x)*exp(2*x)/2.

a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3).

a(n) = Sum_{k = 0..n} binomial(n,k)*k*(3*k - 1)/2.

a(n) = 2^(n-3)*n*(3*n + 1).

Sum_{n>=1} 1/a(n) = 8*(-3*2^(1/3)*Hypergeometric2F1(1/3,1/3;4/3;-1) + 3 + log(2)) = 1.1906948190529335181687...

MAPLE

a:=series(x*(1+x)/(1-2*x)^3, x=0, 31): seq(coeff(a, x, n), n=0..30); # Paolo P. Lava, Mar 27 2019

MATHEMATICA

LinearRecurrence[{6, -12, 8}, {0, 1, 7}, 29]

Table[2^(n - 3) n (3 n + 1), {n, 0, 28}]

PROG

(PARI) concat(0, Vec(x*(1+x)/(1-2*x)^3 + O(x^99))) \\ Altug Alkan, Aug 27 2016

CROSSREFS

Cf. A000326.

Cf. A001793 (binomial transform of triangular numbers), A001788 (binomial transform of squares), A084899 (binomial transform of heptagonal numbers).

Sequence in context: A045889 A038739 A038798 * A062455 A085277 A269084

Adjacent sequences:  A276286 A276287 A276288 * A276290 A276291 A276292

KEYWORD

nonn,easy

AUTHOR

Ilya Gutkovskiy, Aug 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 21 04:56 EDT 2019. Contains 322310 sequences. (Running on oeis4.)