login
A276279
Number of triangular partitions of n of order 8.
1
1, 8, 36, 127, 386, 1050, 2632, 6187, 13789, 29396, 60336, 119818, 231140, 434555, 798320, 1436294, 2535511, 4398876, 7510668, 12635844, 20969143, 34357138, 55625853, 89060282, 141101197, 221350031, 344008194, 529925620, 809497788, 1226738457
OFFSET
0,2
LINKS
L. Carlitz, R. Scoville, A generating function for triangular partitions, Math. Comp. 29 (1975) 67-77.
FORMULA
G.f.: 1/((1-x)^8*(1-x^3)^7*(1-x^5)^6*(1-x^7)^5*(1-x^9)^4*(1-x^11)^3*(1-x^13)^2*(1-x^15)).
MATHEMATICA
CoefficientList[Series[1/((1-x)^8 (1-x^3)^7 (1-x^5)^6 (1-x^7)^5 (1-x^9)^4 (1-x^11)^3 (1-x^13)^2 (1-x^15)), {x, 0, 50}], x]
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(1-x^3)^7*(1-x^5)^6*(1-x^7)^5*(1-x^9)^4*(1-x^11)^3*(1-x^13)^2*(1-x^15)))); // Corrected by Georg Fischer, May 19 2019
CROSSREFS
Cf. similar sequences listed in A276235.
Sequence in context: A347751 A341222 A213581 * A210379 A131123 A055910
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 01 2016
EXTENSIONS
Terms a(10) onward corrected by Georg Fischer, May 19 2019
STATUS
approved