Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Apr 06 2018 19:15:42
%S 1,9,49,5929,5929,43681,23107249,1871687169,1651690881,80932853169,
%T 728395678521,16627205056609,749581550409169,6746233953682521,
%U 251244785594209,874583098653441529,70841230990928763849,66794010904910569401,336708608971654180350441,25044441989627170439289,1929658795768681119896329
%N a(n) = numerator of rational fraction of function (Gamma[5/4]^2 Gamma[n + 3/4]^2)/(Gamma[3/4]^2 Gamma[n + 5/4]^2).
%C From _Robert Israel_, Sep 09 2016: (Start)
%C Square of numerator of pochhammer(3/4,n)/pochhammer(5/4,n) = Product_{odd k <= 4n+1} k^(k mod 4 - 2).
%C All terms are odd squares. (End)
%H Robert Israel, <a href="/A276239/b276239.txt">Table of n, a(n) for n = 0..734</a>
%p q:= 1: A[0]:= 1:
%p for i from 1 to 50 do
%p p:= A[i-1]*(4*i-1);
%p q:= q*(4*i+1);
%p g:= igcd(p,q);
%p A[i]:= p/g;
%p q:= q/g;
%p od:
%p seq(A[i]^2,i=0..50); # _Robert Israel_, Sep 09 2016
%t Table[Numerator[Pochhammer[3/4, n]^2/Pochhammer[5/4, n]^2], {n, 0, 20}] (* _Vaclav Kotesovec_, Apr 06 2018 *)
%Y Cf. A276240 (denominators).
%K nonn,frac
%O 0,2
%A _Artur Jasinski_, Aug 25 2016