login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A276234 a(n) = n/gcd(n, 256). 3
1, 1, 3, 1, 5, 3, 7, 1, 9, 5, 11, 3, 13, 7, 15, 1, 17, 9, 19, 5, 21, 11, 23, 3, 25, 13, 27, 7, 29, 15, 31, 1, 33, 17, 35, 9, 37, 19, 39, 5, 41, 21, 43, 11, 45, 23, 47, 3, 49, 25, 51, 13, 53, 27, 55, 7, 57, 29, 59, 15, 61, 31, 63, 1, 65, 33, 67, 17, 69, 35, 71 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

a(n) first differs from A000265(n) at n = 512. - Andrew Howroyd, Jul 23 2018

A multiplicative sequence. Also, a(n) is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for n >= 1, m >= 1. In particular, a(n) is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, Feb 27 2019

LINKS

Andrew Howroyd, Table of n, a(n) for n = 1..1000

Peter Bala, A note on the sequence of numerators of a rational function, 2019.

Index entries for linear recurrences with constant coefficients, order 512.

FORMULA

a(2k-1) = 2k-1.

G.f.: (x+x^3)/(1-x^2)^2 +(x^2+x^6)/(1-x^4)^2 +(x^4+x^12)/(1-x^8)^2 +(x^8+x^24)/(1-x^16)^2 +(x^16+x^48)/(1-x^32)^2 +(x^32+x^96)/(1-x^64)^2 +(x^64+x^192)/(1-x^128)^2 +(x^128+x^256+x^384)/(1-x^256)^2. - Robert Israel, Aug 26 2016

a(n) = 2*a(n-256) - a(n-512). - Charles R Greathouse IV, Aug 26 2016

From Peter Bala, Feb 27 2019: (Start)

a(n) = numerator(n/(n + 256)).

O.g.f.: F(x) - Sum_{k = 1..8} F(x^(2^k)), where F(x) = x/(1 - x)^2. Cf. A106617. (End)

From Amiram Eldar, Nov 26 2022: (Start)

Dirichlet g.f.: zeta(s-1)*(1 - 1/2^s - 1/2^(2*s) - 1/2^(3*s) - 1/2^(4*s) - 1/2^(5*s) - 1/2^(6*s) - 1/2^(7*s) - 1/2^(8*s)).

Multiplicative with a(2^e) = 2^(e-min(e,8)), and a(p^e) = p^e for p > 2.

Sum_{k=1..n} a(k) ~ (43691/131072) * n^2. (End)

MAPLE

seq(n/igcd(n, 256), n=1..100); # Robert Israel, Aug 26 2016

MATHEMATICA

Table[n/GCD[n, 2^8], {n, 1, 80}] (* G. C. Greubel, Feb 27 2019 *)

PROG

(PARI) a(n)=n/gcd(n, 256) \\ Charles R Greathouse IV, Aug 26 2016

(Magma) [n/GCD(n, 2^8): n in [1..80]]; // G. C. Greubel, Feb 27 2019

(Sage) [n/gcd(n, 2^8) for n in (1..80)] # G. C. Greubel, Feb 27 2019

(GAP) List([1..80], n-> n/Gcd(n, 2^8)); # G. C. Greubel, Feb 27 2019

CROSSREFS

Cf. A276233 (numerators), A227140, A000265, A106617.

Sequence in context: A327539 A072963 A161955 * A000265 A227140 A106617

Adjacent sequences: A276231 A276232 A276233 * A276235 A276236 A276237

KEYWORD

nonn,easy,mult,changed

AUTHOR

Artur Jasinski, Aug 24 2016

EXTENSIONS

Keyword:mult added and terms a(51) and beyond from Andrew Howroyd, Jul 23 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 19:04 EST 2022. Contains 358588 sequences. (Running on oeis4.)