This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276180 n^2*a(n) = 2*(14*n^2 - 16*n + 7)*a(n-1) - 20*(24*n^2 - 56*n + 41)*a(n-2) + 80*(64*n^2 - 224*n + 221)*a(n-3) - 1600*(24*n^2 - 112*n + 139)*a(n-4) + 6400*(28*n^2 - 164*n + 245)*a(n-5) - 128000*(2*n-7)^2*a(n-6) for n>6, a(0)=1, a(1)=10, a(2)=30, a(3)=-300, a(4)=-3850, a(5)=-13940, a(6) = 56300. 2
 1, 10, 30, -300, -3850, -13940, 56300, 543400, -2332250, -29758500, 340835780, 7316239000, 40381709500, -199606565000, -4494519345000, -25429880846000, 18331676223750, 848074482677500, 714616060812500, -19019302889325000, 506727569992188500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..301 Robert S. Maier, On Rationally Parametrized Modular Equations, arXiv:math/0611041 [math.NT], 2006. FORMULA n^2*a(n) = 2*(14*n^2 - 16*n + 7)*a(n-1) - 20*(24*n^2 - 56*n + 41)*a(n-2) + 80*(64*n^2 - 224*n + 221)*a(n-3) - 1600*(24*n^2 - 112*n + 139)*a(n-4) + 6400*(28*n^2 - 164*n + 245)*a(n-5) - 128000*(2*n-7)^2*a(n-6) for n>6, a(0)=1, a(1)=10, a(2)=30, a(3)=-300, a(4)=-3850, a(5)=-13940, a(6)=56300. 0 = 4*x*(x^2+2*x+5)*(x^4+5*x^3+15*x^2+25*x+25)*y'' + (24*x^6 + 144*x^5 + 520*x^4 + 1120*x^3 + 1600*x^2 + 1300*x + 500)*y' + 25*(x^5 + 5*x^4 + 15*x^3 + 25*x^2 + 25*x + 10)*y, where y(x) = A(x/-20). EXAMPLE A(x) = 1 + 10*x + 30*x^2 - 300*x^3 - 3850*x^4 - 13940*x^5 + ... is the g.f. MATHEMATICA a[n_] := a[n] = If[n <= 6, {1, 10, 30, -300, -3850, -13940, 56300}[[n+1]], (1/n^2)(6400(28n^2 - 164n + 245) a[n-5] - 1600(24n^2 - 112n + 139) a[n-4] + 80(64n^2 - 224n + 221) a[n-3] - 20(24n^2 - 56n + 41) a[n-2] + 2(14n^2 - 16n + 7) a[n-1] - 128000(2n - 7)^2 a[n-6])]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 16 2018 *) PROG (PARI) seq(N) = {   my(a = vector(N));   a[1] = 10; a[2] = 30; a[3] = -300; a[4] = -3850; a[5] = -13940; a[6] = 56300;   for (n=7, N,   my(t1 = 2*(14*n^2 - 16*n + 7)*a[n-1] - 20*(24*n^2 - 56*n + 41)*a[n-2],      t2 = 80*(64*n^2 - 224*n + 221)*a[n-3] - 1600*(24*n^2 - 112*n + 139)*a[n-4],      t3 = 6400*(28*n^2 - 164*n + 245)*a[n-5] - 128000*(2*n-7)^2 * a[n-6]);   a[n] = (t1+t2+t3)/n^2);   concat(1, a); }; seq(25) (MAGMA)  I:=[10, 30, -300, -3850, -13940, 56300]; [1] cat [n le 6 select I[n] else (2*(14*n^2-16*n+7)*Self(n-1)-20*(24*n^2- 56*n+41)*Self(n-2)+80*(64*n^2-224*n+221)*Self(n-3)-1600*(24*n^2-112*n+139)*Self(n-4)+6400*(28*n^2-164*n+245)*Self(n-5)-128000*(2*n-7)^2*Self(n-6))div n^2: n in [1..30]]; // Vincenzo Librandi, Aug 25 2016 CROSSREFS Cf. A091401, A276018. Sequence in context: A268117 A256879 A064012 * A247207 A187521 A187624 Adjacent sequences:  A276177 A276178 A276179 * A276181 A276182 A276183 KEYWORD sign AUTHOR Gheorghe Coserea, Aug 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 24 10:24 EDT 2019. Contains 322422 sequences. (Running on oeis4.)