login
Square array read by antidiagonals: T(n,k) = Product_{i = 1..k} gcd(n, i).
1

%I #22 Aug 01 2019 04:09:12

%S 1,1,1,1,2,1,1,1,2,1,1,2,3,4,1,1,1,2,3,4,1,1,2,1,8,3,8,1,1,1,6,1,8,9,

%T 8,1,1,2,1,12,5,16,9,16,1,1,1,2,1,12,5,16,9,16,1,1,2,3,8,1,72,5,64,27,

%U 32,1,1,1,2,3,8,1,72,5,64,27,32,1,1,2,1,4

%N Square array read by antidiagonals: T(n,k) = Product_{i = 1..k} gcd(n, i).

%H Peter Kagey, <a href="/A276162/b276162.txt">Table of n, a(n) for n = 1..10000</a>

%H Mohamed Abobakr, <a href="http://math.stackexchange.com/questions/1897045/greatest-common-divisor-sequence/1897046">Greatest common divisor sequence</a>

%e T(6, 3) = gcd(6, 1) * gcd(6, 2) * gcd(6, 3) = 6.

%o (PARI) T(n,k)=prod(i=2,k,gcd(n,i))

%o for(s=1,15,for(k=1,s-1, print1(T(s-k,k)", "))) \\ _Charles R Greathouse IV_, Aug 22 2016

%o (Haskell) a276162T n k = product $ map (gcd n) [1..k]

%o -- _Peter Kagey_, Aug 23 2016

%Y Cf. A051190, A067911, A092287.

%K nonn,tabl

%O 1,5

%A _Peter Kagey_, Aug 22 2016