OFFSET
0,7
COMMENTS
Number of nonzero digits in the base 5 representation of n.
Fixed point of the mapping 0 -> 01111, 1 -> 12222, 2 -> 23333, ...
Self-similar or fractal sequence (underlining every fifth term, reproduce the original sequence).
LINKS
Robert Israel, Table of n, a(n) for n = 0..10000
Michael Gilleland, Some Self-Similar Integer Sequences
Ilya Gutkovskiy, Illustration (mapping 0 -> 01111, 1 -> 12222, 2 -> 23333, ...)
FORMULA
a(5^k) = 1.
a(5^k-1) = k.
a(5^k-m) = k, k>0, m = 2,3,4.
a(5^k+m) = 2, k>0, m = 1,2,3,4.
a(5^k-a(5^k)) = k.
a(5^k+(-1)^k) = (k + (-1)^k*(k - 1) + 3)/2.
a(5^k+(-1)^k-1) = A093178(k).
a(5^k+(-1)^k+1) = A000034(k+1), k>0.
G.f. g(x) satisfies g(x) = (1+x+x^2+x^3+x^4)*g(x^5) + (x+x^2+x^3+x^4)/(1-x^5). - Robert Israel, Sep 07 2016
EXAMPLE
The evolution starting with 0 is: 0 -> 01111 -> 0111112222122221222212222 -> ...
...
a(0) = 0;
a(1) = a(5*0+1) = a(0) + 1 = 1;
a(2) = a(5*0+2) = a(0) + 1 = 1;
a(3) = a(5*0+3) = a(0) + 1 = 1;
a(4) = a(5*0+4) = a(0) + 1 = 1;
a(5) = a(5*1+0) = a(1) = 1;
a(6) = a(5*1+1) = a(1) + 1 = 2, etc.
...
Also a(10) = 1, because 10 (base 10) = 20 (base 5) and 20 has 1 nonzero digit.
MAPLE
f:= n -> nops(subs(0=NULL, convert(n, base, 5))):
map(f, [$0..100]); # Robert Israel, Sep 07 2016
MATHEMATICA
Join[{0}, Table[IntegerLength[n, 5] - DigitCount[n, 5, 0], {n, 120}]]
CROSSREFS
KEYWORD
AUTHOR
Ilya Gutkovskiy, Aug 21 2016
STATUS
approved