login
A276079
Numbers n such that prime(k)^(k+1) divides n for some k.
7
4, 8, 12, 16, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 135, 136, 140, 144, 148, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 243, 244, 248, 252, 256, 260, 264, 268, 270, 272
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1 - Product_{i>=1} 1-prime(i)^(-1-i) = 0.2789766... - Amiram Eldar, Oct 21 2020
LINKS
EXAMPLE
625 = 5*5*5*5 = prime(3)^4 so it is divisible by prime(3)^(3+1), and thus 625 is included in the sequence.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A276079 (NONZERO-POS 1 1 A276077))
(Python)
from sympy import primepi, isprime, primefactors, factorint
def a028234(n):
f=factorint(n)
minf = min(f)
return 1 if n==1 else n//(minf**f[minf])
def a067029(n):
f=factorint(n)
return 0 if n==1 else f[min(f)]
def a049084(n): return primepi(n) if isprime(n) else 0
def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
def a(n): return 0 if n==1 else a(a028234(n)) + (1 if a067029(n) > a055396(n) else 0)
print([n for n in range(1, 301) if a(n)!=0]) # Indranil Ghosh, Jun 21 2017
CROSSREFS
Positions of nonzeros in A276077.
Complement: A276078.
Cf. A000040, A000720, A008586 (a subsequence).
Differs from its subsequence A100716 for the first time at n=175, where a(175) = 625, while that value is missing from A100716.
Sequence in context: A086133 A100716 A328251 * A311124 A191677 A076310
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved