login
Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.
35

%I #40 Aug 11 2024 10:34:56

%S 1,2,3,6,9,18,5,10,15,30,45,90,25,50,75,150,225,450,125,250,375,750,

%T 1125,2250,7,14,21,42,63,126,35,70,105,210,315,630,175,350,525,1050,

%U 1575,3150,875,1750,2625,5250,7875,15750,49,98,147,294,441,882,245,490,735,1470,2205,4410,1225,2450,3675,7350,11025,22050,6125,12250,18375,36750,55125,110250,343

%N Factorial base exp-function: digits in factorial base representation of n become the exponents of successive prime factors whose product a(n) is.

%C These are prime-factorization representations of single-variable polynomials where the coefficient of term x^(k-1) (encoded as the exponent of prime(k) in the factorization of n) is equal to the digit in one-based position k of the factorial base representation of n. See the examples.

%H Antti Karttunen, <a href="/A276076/b276076.txt">Table of n, a(n) for n = 0..5040</a>

%H Indranil Ghosh, <a href="/A276076/a276076_1.txt">Python program for computing this sequence</a>.

%H <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>.

%F a(0) = 1, for n >= 1, a(n) = A275733(n) * a(A276009(n)).

%F Or: for n >= 1, a(n) = a(A257687(n)) * A000040(A084558(n))^A099563(n).

%F Other identities.

%F For all n >= 0:

%F A276075(a(n)) = n.

%F A001221(a(n)) = A060130(n).

%F A001222(a(n)) = A034968(n).

%F A051903(a(n)) = A246359(n).

%F A048675(a(n)) = A276073(n).

%F A248663(a(n)) = A276074(n).

%F a(A007489(n)) = A002110(n).

%F a(A059590(n)) = A019565(n).

%F For all n >= 1:

%F a(A000142(n)) = A000040(n).

%F a(A033312(n)) = A076954(n-1).

%F From _Antti Karttunen_, Apr 18 2022: (Start)

%F a(n) = A276086(A351576(n)).

%F A276085(a(n)) = A351576(n)

%F A003557(a(n)) = A351577(n).

%F A003415(a(n)) = A351950(n).

%F A069359(a(n)) = A351951(n).

%F A083345(a(n)) = A342001(a(n)) = A351952(n).

%F A351945(a(n)) = A351954(n).

%F A181819(a(n)) = A275735(n).

%F (End)

%F lambda(a(n)) = A262725(n+1), where lambda is Liouville's function, A008836. - _Antti Karttunen_ and _Peter Munn_, Aug 09 2024

%e n A007623 polynomial encoded as a(n)

%e -------------------------------------------------------

%e 0 0 0-polynomial (empty product) = 1

%e 1 1 1*x^0 prime(1)^1 = 2

%e 2 10 1*x^1 prime(2)^1 = 3

%e 3 11 1*x^1 + 1*x^0 prime(2) * prime(1) = 6

%e 4 20 2*x^1 prime(2)^2 = 9

%e 5 21 2*x^1 + 1*x^0 prime(2)^2 * prime(1) = 18

%e 6 100 1*x^2 prime(3)^1 = 5

%e 7 101 1*x^2 + 1*x^0 prime(3) * prime(1) = 10

%e and:

%e 23 321 3*x^2 + 2*x + 1 prime(3)^3 * prime(2)^2 * prime(1)

%e = 5^3 * 3^2 * 2 = 2250.

%t a[n_] := Module[{k = n, m = 2, r, p = 2, q = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0|| r != 0, q *= p^r; p = NextPrime[p]; m++]; q]; Array[a, 100, 0] (* _Amiram Eldar_, Feb 07 2024 *)

%o (Scheme, two versions)

%o (define (A276076 n) (if (zero? n) 1 (* (expt (A000040 (A084558 n)) (A099563 n)) (A276076 (A257687 n)))))

%o (define (A276076 n) (if (zero? n) 1 (* (A275733 n) (A276076 (A276009 n)))))

%Y Cf. A000040, A007623, A084558, A099563, A257687, A276009.

%Y Cf. A276075 (a left inverse).

%Y Cf. A276078 (same terms in ascending order).

%Y Cf. also A000142, A001221, A001222, A002110, A007489, A008836, A019565, A033312, A034968, A048675, A051903, A059590, A060130, A076954, A246359, A248663, A262725, A276073, A276074, A351576, A351577, A351950, A351951, A351952, A351954.

%Y Cf. also A275733, A275734, A275735, A275725 for other such encodings of factorial base related polynomials, and A276086 for a primorial base analog.

%K nonn,base

%O 0,2

%A _Antti Karttunen_, Aug 18 2016

%E Name changed by _Antti Karttunen_, Apr 18 2022