This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276068 Sum of the lengths of the first descents in all bargraphs having semiperimeter n (n>=2). A descent is a maximal sequence of consecutive down steps. 1

%I

%S 1,3,9,26,74,210,598,1715,4963,14504,42808,127553,383451,1162134,

%T 3548060,10904023,33708595,104756233,327086895,1025603074,3228082910,

%U 10195295005,32300276271,102622734570,326893843104,1043767139218,3340051490096

%N Sum of the lengths of the first descents in all bargraphs having semiperimeter n (n>=2). A descent is a maximal sequence of consecutive down steps.

%H M. Bousquet-Mélou and A. Rechnitzer, <a href="http://dx.doi.org/10.1016/S0196-8858(02)00553-5">The site-perimeter of bargraphs</a>, Adv. in Appl. Math. 31 (2003), 86-112.

%H Emeric Deutsch, S Elizalde, <a href="http://arxiv.org/abs/1609.00088">Statistics on bargraphs viewed as cornerless Motzkin paths</a>, arXiv preprint arXiv:1609.00088, 2016

%F G.f.: g(z) = (1-z)(1-2z-z^2-Q)/(2z(1-2z)), where Q = sqrt((1-z)(1-3z-z^2-z^3)).

%F a(n) = Sum(k*A276067(n,k), k>=1).

%e a(4) = 9 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that the sum of the lengths of their first descents is 1+2+1+2+3.

%p g := (1/2)*(1-z)*(1-2*z-z^2-sqrt((1-z)*(1-3*z-z^2-z^3)))/(z*(1-2*z)): gser := series(g, z = 0, 38): seq(coeff(gser, z, n), n = 2 .. 35);

%t G = (1/2)(1-z)(1 - 2z - z^2 - Sqrt[(1-z)(1 - 3z - z^2 - z^3)])/(z(1-2z)) + O[z]^29;

%t Drop[CoefficientList[G, z], 2] // Flatten (* _Jean-François Alcover_, Aug 07 2018 *)

%Y Cf. A082582, A276067.

%K nonn

%O 2,2

%A _Emeric Deutsch_, Aug 25 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 03:04 EDT 2019. Contains 322237 sequences. (Running on oeis4.)