This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276013 Diagonal of (1 - 9 x y) / ((1 - 3 y - 2 x + 3 y^2 + 8 x^2 y) * (1 - u - z) * (1 - v - w)). 1
 1, 12, 864, 100800, 14112000, 2139830784, 338341183488, 54913641209856, 9080061146956800, 1523231914913280000, 258557709598427086848, 44324863067728222027776, 7663322563977594870300672, 1334677098876385703362560000, 233951210561895726160281600000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS "The corresponding (order-five) linear differential operator is not homomorphic to its adjoint, even with an algebraic extension, and its differential Galois group is SL(5,C)." (see A. Bostan link). LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..33 A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015, Eq. (36). FORMULA a(n) = [(xyzuvw)^n] (1-9*x*y)/((1 - 3*y - 2*x + 3*y^2 + 8*x^2*y) * (1-u-z) * (1-v-w)). From Vaclav Kotesovec, Dec 03 2017: (Start) Recurrence: (n-1)^2*n^3*(3*n - 5)*a(n) = 24*(n-1)^2*(2*n - 1)^2*(3*n - 4)*(3*n - 2)*a(n-1) - 384*(2*n - 3)^2*(2*n - 1)^2*(3*n - 5)*(3*n - 2)*a(n-2). a(n) ~ Gamma(1/3) * 2^(6*n - 7/3) * 3^(n + 1/2) / (Pi^2 * n^(4/3)). (End) EXAMPLE 1 + 12*x + 864*x^2 + 100800*x^3 + ... MAPLE diag_coeff := proc(expr, n)     local var := [seq(indets(expr))], nvar := numelems(var);     coeftayl(expr, var=[seq(0, i=1..nvar)], [seq(n, i=1..nvar)]) end proc: pxy := (1 - 3*y - 2*x + 3*y^2 + 9*x^2*y): expr := (1 - 9*x*y)/(pxy * (1-u-z-u*z) * (1-v-w)): [seq(diag_coeff(expr, i), i=0..14)]; MATHEMATICA f = (1 - 9 x y)/((1 - 3y - 2x + 3 y^2 + 8 x^2 y)*(1 - u - z)*(1 - v - w)); a[n_] := Fold[SeriesCoefficient[#1, {#2, 0, n}] &, f, {x, y, z, u, v, w}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 03 2017 *) CROSSREFS Cf. A004987, A268549, A268545-A268555. Sequence in context: A275568 A271433 A140412 * A116225 A214313 A306642 Adjacent sequences:  A276010 A276011 A276012 * A276014 A276015 A276016 KEYWORD nonn AUTHOR Gheorghe Coserea, Aug 16 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 22:44 EDT 2019. Contains 328291 sequences. (Running on oeis4.)