

A275938


Numbers n such that d(n) is prime while sigma(n) is not prime (where d(n) = A000005(n) and sigma(n) = A000203(n)).


2



3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

From Robert Israel, Aug 12 2016: (Start)
d(n) is prime iff n = p^k where p is prime and k+1 is prime.
For such n, sigma(n) = 1+p+...+p^k = (pn1)/(p1).
The sequence contains 2^(q1) for q in A054723,
3^(q1) for q prime but not in A028491,
5^(q1) for q prime but not in A004061,
7^(q1) for q prime but not in A004063, etc.
In particular, it contains all odd primes. (End)


LINKS

Robert Israel, Table of n, a(n) for n = 1..10000


EXAMPLE

49 is a term because A000005(49) = 3 is prime while sigma(49) = 57 is not.


MAPLE

N:= 1000: # to get all terms <= N
P:= select(isprime, {2, seq(p, p=3..N, 2)}):
fp:= proc(p) local q, res;
q:= 2;
res:= NULL;
while p^(q1) <= N do
if not isprime((p^q1)/(p1)) then res:= res, p^(q1) fi;
q:= nextprime(q);
od;
res;
end proc:
sort(convert(map(fp, P), list)); # Robert Israel, Aug 12 2016


PROG

(PARI) lista(nn) = for(n=1, nn, if(isprime(numdiv(n)) && !isprime(sigma(n)), print1(n, ", ")));


CROSSREFS

Cf. A000005, A000203, A004061, A004063, A009087, A023194, A028491.
Sequence in context: A338483 A318871 A330225 * A093893 A056912 A075763
Adjacent sequences: A275935 A275936 A275937 * A275939 A275940 A275941


KEYWORD

nonn,easy


AUTHOR

Altug Alkan, Aug 12 2016


STATUS

approved



