login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275860 floor(c*s*a(n-1)) + floor(d*r*a(n-2)), where r =  (3 + sqrt(13))/2, s = r/(r-1), c = 3, d = 1, a(0) = 1, a(1) = 1. 4
1, 1, 7, 33, 164, 813, 4039, 20063, 99665, 495099, 2459470, 12217747, 60693301, 301502133, 1497752387, 7440286381, 36960623072, 183606865105, 912091791531, 4530938620963, 22508046862781, 111811749387479, 555439900107962, 2759222392297991, 13706808258965257 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,0,0,-4,0,1,-1).

FORMULA

a(n) = floor(c*s*a(n-1)) + floor(d*r*a(n-2)), where r =  (3 + sqrt(13))/2, s = r/(r-1), c = 3, d = 1, a(0) = 1, a(1) = 1.

G.f.: (1 -4*x +2*x^2 -2*x^3 +3*x^4 -3*x^5 +x^6)/(1 -5*x +4*x^4 -x^6 +x^7).

MATHEMATICA

c = 3; d = 1; z = 40;

r = (c + Sqrt[c^2 + 4 d])/2; s = r/(r - 1); a[0] = 1; a[1] = 1;

a[n_] := a[n] = Floor[c*s*a[n - 1]] + Floor[d*r*a[n - 2]];

t = Table[a[n], {n, 0, z}]

CoefficientList[Series[(1-4*x+2*x^2-2*x^3+3*x^4-3*x^5+x^6)/(1-5*x+4*x^4-x^6+x^7), {x, 0, 50}], x] (* G. C. Greubel, Feb 08 2018 *)

PROG

(PARI) x='x+O('x^30); Vec((1-4*x+2*x^2-2*x^3+3*x^4-3*x^5+x^6)/(1-5*x +4*x^4-x^6+x^7)) \\ G. C. Greubel, Feb 08 2018

(MAGMA) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-4*x+2*x^2-2*x^3+3*x^4-3*x^5+x^6)/(1-5*x+4*x^4-x^6+x^7))) // G. C. Greubel, Feb 08 2018

CROSSREFS

Cf. A275856, A275857, A275858, A275859, A275861.

Sequence in context: A155603 A282991 A295270 * A054256 A085636 A064306

Adjacent sequences:  A275857 A275858 A275859 * A275861 A275862 A275863

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 4 19:13 EDT 2020. Contains 336202 sequences. (Running on oeis4.)