login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275859 a(n) = floor(c*s*a(n-1)) + floor(d*r*a(n-2)), where r = 1 + sqrt(2), s = r/(r-1), c = 2, d = 1, a(0) = 1, a(1) = 1. 4
1, 1, 5, 19, 76, 304, 1220, 4898, 19667, 78971, 317103, 1273309, 5112902, 20530578, 82439414, 331030964, 1329236757, 5337477605, 21432349833, 86060430295, 345570957936, 1387621309348, 5571917587224, 22373730779190, 89840494074695, 360749597608127 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Clark Kimberling, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (5,-4,0,1,-1).

FORMULA

a(n) = floor(s*a(n-1)) + floor(r*a(n-2)), where r = 1 + sqrt(2), s = r/(r-1).

G.f.: (1 - 4*x + 4*x^2 - 2*x^3)/(1 - 5*x + 4*x^2 - x^4 + x^5).

MATHEMATICA

c = 2; d = 1; z = 40;

r = (c + Sqrt[c^2 + 4 d])/2; s = r/(r - 1); a[0] = 1; a[1] = 1;

a[n_] := a[n] = Floor[c*s*a[n - 1]] + Floor[d*r*a[n - 2]];

t = Table[a[n], {n, 0, z}]

CoefficientList[Series[(1-4*x+4*x^2-2*x^3)/(1-5*x+4*x^2-x^4+x^5), {x, 0, 50}], x] (* G. C. Greubel, Feb 08 2018 *)

LinearRecurrence[{5, -4, 0, 1, -1}, {1, 1, 5, 19, 76}, 30] (* Harvey P. Dale, Apr 23 2019 *)

PROG

(PARI) x='x+O('x^30); Vec((1-4*x+4*x^2-2*x^3)/(1-5*x+4*x^2-x^4+x^5)) \\ G. C. Greubel, Feb 08 2018

(MAGMA) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((1-4*x+4*x^2-2*x^3)/(1-5*x+4*x^2-x^4+x^5))) // G. C. Greubel, Feb 08 2018

CROSSREFS

Cf. A275856, A275857, A275858, A275860, A275861.

Sequence in context: A149769 A149770 A285424 * A323269 A268815 A108981

Adjacent sequences:  A275856 A275857 A275858 * A275860 A275861 A275862

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Aug 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:24 EDT 2020. Contains 337291 sequences. (Running on oeis4.)