login
A275850
Number of digits in range [1..A084558(n)] that do not occur in factorial base representation of n: a(n) = A084558(n) - A275806(n).
2
0, 0, 1, 1, 1, 0, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 4
OFFSET
0,7
FORMULA
a(n) = A084558(n) - A275806(n).
Other identities. For all n >= 0:
a(n) = A275849(A225901(n)).
EXAMPLE
For n=6 ("100" in factorial base representation A007623) there are two digits in interval [1..A084558(6)] = [1..3] that are not used, namely 2 and 3, thus a(6)=2.
For n=12 ("200") there are also two digits in interval [1..3] that are not used, namely 1 and 3, thus a(12)=2.
For n=23 ("321") all the digits in interval [1..3] are in use, thus a(23)=0.
PROG
(Scheme) (define (A275850 n) (- (A084558 n) (A275806 n)))
CROSSREFS
Cf. A033312 (indices of zeros).
Cf. also A007623, A225901, A275849.
Sequence in context: A156608 A368752 A323827 * A112505 A104638 A270648
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 15 2016
STATUS
approved