login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275788 a(0) = 0, a(n+1) = 2*a(n) + (-1)^floor(n/3). 1
0, 1, 3, 7, 13, 25, 49, 99, 199, 399, 797, 1593, 3185, 6371, 12743, 25487, 50973, 101945, 203889, 407779, 815559, 1631119, 3262237, 6524473, 13048945, 26097891, 52195783, 104391567, 208783133, 417566265, 835132529, 1670265059, 3340530119, 6681060239 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) and its successive differences:

0,  1,  3,  7, 13, 25, 49, ...

1,  2,  4,  6, 12, 24, 50, 100, ...

1,  2,  2,  6, 12, 26, 50, 100, 198, ...

1,  0,  4,  6, 14, 24, 50,  98, 200, 398, ...

-1, 4,  2,  8, 10, 26, 48, 102, 198, 400, 794, ...

5, -2,  6,  2, 16, 22, 54,  96, 202, 394, 800, 1590, ...

-7, 8, -4, 14,  6, 32, 42, 106, 192, 406, 790, 1600, 3178, ...

... .

Each row has the recurrence a(n) + a(n+3) = 7*2^n.

Main diagonal: 2*A001045(n).

Upper diagonals: A084214(n+1), 3*2^n, ... .

Subdiagonals: 2^n, A078008(n), A084214(n+1), -2^n, ... .

a(-n) = 0, 1/2, 3/4, 7/8, -1/16, -17/32, -49/64, 15/128, ... .

b(n), numerators of a(-n), and first differences:

0, 1, 3,  7,  -1, -17, -49,  15, 143,  399,  -113, -1137, ...

1, 2, 4, -8, -16, -32,  64, 128, 256, -512, -1024, ... = A000079(n)*A130151(n), not in the OEIS.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,0,-1,2).

FORMULA

From Colin Barker, Aug 09 2016: (Start)

a(n) = 2*a(n-1) - a(n-3) + 2*a(n-4) for n>3.

G.f.: x*(1 + x + x^2) / ((1+x)*(1-2*x)*(1-x+x^2)).

(End)

a(n+3) = 7*2^n - a(n), a(0)=0, a(1)=1, a(2)=3.

EXAMPLE

a(1)=2*0+1=1, a(2)=2*1+1=3, a(2)=2*3+1=7, a(3)=2*7-1=13, a(4)=2*13-1=25, ... .

MATHEMATICA

CoefficientList[Series[x (1 + x + x^2)/((1 + x) (1 - 2 x) (1 - x + x^2)), {x, 0, 33}], x] (* Michael De Vlieger, Aug 11 2016 *)

LinearRecurrence[{2, 0, -1, 2}, {0, 1, 3, 7}, 25] (* G. C. Greubel, Aug 16 2016 *)

PROG

(PARI) concat(0, Vec(x*(1+x+x^2)/((1+x)*(1-2*x)*(1-x+x^2)) + O(x^40))) \\ Colin Barker, Aug 10 2016

CROSSREFS

Cf. A000079, A001045, A002264, A005009, A007283, A078008, A084214, A113405, A130151, A274817.

Sequence in context: A201081 A017994 A218199 * A169914 A078000 A190569

Adjacent sequences:  A275785 A275786 A275787 * A275789 A275790 A275791

KEYWORD

nonn

AUTHOR

Paul Curtz, Aug 09 2016

EXTENSIONS

More terms from Colin Barker, Aug 10 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)