######################################################### # # # Coded by Indranil Ghosh (indranilg49@gmail.com) # # # ######################################################### #Python 2.7.11, OEIS sequence: A275725 from sympy import prime, primorial, factorial as f def a002110(n): return 1 if n<1 else primorial(n) def a007623(n, p=2): return n if n<p else a007623(int(n/p), p+1)*10 + n%p def a084558(n): return 0 if n==0 else len(str(a007623(n))) def a099563(n): i=2 d=0 while n: d=n%i n=(n - d)/i i+=1 return d def a249344(n, k): p=prime(n) i=z=0 while p**i<=k: if k%(p**i)==0: z=i i+=1 return z def a257678(n): x=str(a007623(n))[1:][::-1] return sum([int(x[i])*f(i + 1) for i in xrange(len(x))]) def a273673(n, k): e=a249344((1 + a084558(k)), n) return (n/ prime(1 + a084558(k))**e)*prime(1 + a084558(k) - a099563(k))**e def a275723(n, k): return n if k==0 else a275723(a273673(n, k), a257678(k)) def a(n): return a275723(a002110(1 + a084558(n)), n) print [a(n) for n in xrange(100)]