login
A275690
G.f. A(x) satisfies: 1 = ...(((((A(x) - x)^(1/3) - x^2)^(1/3) - x^3)^(1/3) - x^4)^(1/3) - x^5)^(1/3) -...- x^n)^(1/3) -..., an infinite series of nested cube roots.
0
1, 1, 3, 9, 30, 99, 334, 1116, 3744, 12504, 41724, 138840, 461187, 1528554, 5057028, 16699293, 55051065, 181184337, 595400772, 1953715239, 6401926227, 20950064478, 68472011889, 223521012585, 728827015536, 2373846887673, 7723658267667, 25104640758607, 81519763177575, 264463605423009, 857192148657477, 2775964660002954, 8982278557410627, 29040795844301862, 93819208534071840, 302863860771034455, 976981070712962919, 3149327670664845204
OFFSET
0,3
PROG
(PARI) {a(n) = my(A=1 +x*O(x^n)); for(k=0, n, A = A^3 + x^(n+1-k)); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
Cf. A132331 (variant), A274965 (variant).
Sequence in context: A052906 A102898 A050181 * A089931 A148946 A096222
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 07 2016
STATUS
approved