login
A275689
Decimal expansion of 3*zeta(3)/(4*log(2)).
1
1, 3, 0, 0, 6, 5, 1, 1, 4, 9, 7, 9, 1, 0, 1, 8, 7, 0, 3, 3, 2, 3, 8, 6, 3, 9, 5, 8, 2, 6, 0, 3, 5, 6, 5, 3, 9, 9, 7, 5, 3, 8, 2, 3, 7, 3, 3, 8, 0, 6, 1, 9, 1, 3, 6, 3, 5, 1, 2, 2, 6, 2, 5, 3, 2, 4, 8, 9, 8, 9, 5, 2, 5, 4, 3, 9, 4, 6, 2, 0, 7, 7, 6, 4, 7, 2, 9, 1, 6, 8, 3, 6, 3, 4, 6, 9, 3, 6, 8, 7
OFFSET
1,2
COMMENTS
As it appears that the Sum {n>=1} (-1)^(n+1)/n^2 / Sum {n>=1} ((-1)^(n+1))/n^1 is the inverse of Levy's constant, or more traditionally the log of Levy's constant (A100199), this sequence which is equal to Sum {n>=1} (-1)^(n+1)/n^3 / Sum {n>=1} ((-1)^(n+1))/n^1 may be the inverse of the log of another constant with similar properties.
FORMULA
3*zeta(3)/4*log(2) = A197070 / A002162 = Sum {n>=1} (-1)^(n+1)/n^3 / Sum {n>=1} ((-1)^(n+1))/n^1
EXAMPLE
1.300651149791018703323...
MATHEMATICA
RealDigits[3*Zeta[3]/(4*Log[2]), 10, 120][[1]] (* Amiram Eldar, May 27 2023 *)
PROG
(PARI) 3*zeta(3)/log(16) \\ Charles R Greathouse IV, Aug 05 2016
(PARI) sumalt(n=1, (-1)^n/n^3)/sumalt(n=1, (-1)^n/n) \\ Charles R Greathouse IV, Aug 05 2016
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Terry D. Grant, Aug 05 2016
STATUS
approved