login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275628 Pisot sequence E(31,51), a(n)=[a(n-1)^2/a(n-2)+1/2]. 1
31, 51, 84, 138, 227, 373, 613, 1007, 1654, 2717, 4463, 7331, 12042, 19780, 32490, 53367, 87659, 143986, 236507, 388479, 638103, 1048127, 1721619, 2827875, 4644975, 7629684, 12532269, 20585095, 33812403, 55539146, 91226783, 149846127, 246132342, 404288926, 664071752, 1090782516 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

D. W. Boyd, Pisot sequences which satisfy no linear recurrences, Acta Arith. 32 (1) (1977) 89-98

D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

FORMULA

It is known (Boyd, 1977) that this sequence does not satisfy a linear recurrence. - N. J. A. Sloane, Aug 07 2016

MAPLE

A[0]:= 31:

A[1]:= 51:

for n from 2 to 100 do

  A[n]:= floor(A[n-1]^2/A[n-2]+1/2)

od:

seq(A[n], n=0..100); # Robert Israel, Aug 18 2016

PROG

(PARI) pisotE(nmax, a1, a2) = {

  a=vector(nmax); a[1]=a1; a[2]=a2;

  for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));

  a

}

pisotE(50, 31, 51) \\ Colin Barker, Aug 08 2016

(Python)

a, b = 31, 51

A275628_list = [a, b]

for i in range(1000):

    c, d = divmod(b**2, a)

    a, b = b, c + (0 if 2*d < a else 1)

    A275628_list.append(b) # Chai Wah Wu, Aug 08 2016

CROSSREFS

Cf. A008776, A010902.

Sequence in context: A248904 A068779 A068473 * A176507 A163321 A182380

Adjacent sequences:  A275625 A275626 A275627 * A275629 A275630 A275631

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Aug 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 24 02:32 EDT 2019. Contains 326260 sequences. (Running on oeis4.)