|
|
A275608
|
|
Numbers that divide no nonzero terms of A003422.
|
|
4
|
|
|
3, 6, 8, 9, 12, 13, 15, 16, 18, 20, 21, 24, 25, 26, 27, 28, 29, 30, 32, 33, 35, 36, 39, 40, 42, 43, 44, 45, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 70, 72, 75, 76, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Numbers k such that A013584(k) = 0.
If k is in the sequence, then so is every multiple of k.
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
3 is in the sequence because A003422(1)=1 and A003422(2)=2 are not divisible by 3, and A003422(k) == 1 (mod 3) for k >= 3.
4 is not in the sequence because A003422(3) = 4 is divisible by 4.
|
|
MAPLE
|
filter:= proc(n) local t, r, m;
r:= 1; t:= 1;
for m from 1 do
r:= r*m mod n;
if r = 0 then return true fi;
t:= t + r mod n;
if t = 0 then return false fi;
od;
end proc:
select(filter, [$2..100]);
|
|
MATHEMATICA
|
okQ[n_] := Module[{t, r, m}, r = 1; t = 1; For[m = 1, True, m++, r = Mod[r*m, n]; If[r == 0, Return[True]]; t = Mod[t + r, n]; If[t == 0, Return[False]]]];
Select[Range[2, 100], okQ] (* Jean-François Alcover, Apr 12 2019, after Robert Israel *)
|
|
CROSSREFS
|
Cf. A003422, A013584.
Complement of A049045.
Sequence in context: A167195 A032489 A153769 * A155723 A095277 A185717
Adjacent sequences: A275605 A275606 A275607 * A275609 A275610 A275611
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Robert Israel, Nov 14 2016
|
|
STATUS
|
approved
|
|
|
|