%I #15 Nov 07 2017 07:19:41
%S 1,1,1,2,6,30,270,5100,229380,27535260,9496469340,10086965678520,
%T 34571745136244520,403054252638271664040,16565160940382442188713320,
%U 2510059126960200448967150682000,1444160075122431073529236697462766000
%N Shifts 2 places left under MNL transform.
%C Shifts two places left under MNL transform, see A274760.
%C The Maple program is based on a program by Alois P. Heinz, see A007548 and A274804.
%H M. Bernstein and N. J. A. Sloane, <a href="https://arxiv.org/abs/math/0205301">Some Canonical Sequences of Integers</a>, Linear Algebra and its Applications, Vol. 226-228 (1995), pp. 57-72. Erratum 320 (2000), 210. [Link to arXiv version]
%H M. Bernstein and N. J. A. Sloane, <a href="/A003633/a003633_1.pdf">Some canonical sequences of integers</a>, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
%p mnltr:= proc(p) local g; g:= proc(n) option remember; `if` (n=0, 1, add(((n-1)!/(n-k)!)*p(k) *g(n-k), k=1..n)): end: end: d := mnltr(c): c := n->`if`(n<=2, 1, d(n-2)): A275593 := n -> c(n): seq(A275593(n), n=1..16);
%t mnltr[p_] := Module[{g}, g[n_] := g[n] = If[n == 0, 1, Sum[((n-1)!/(n-k)!)* p[k]*g[n-k], {k, 1, n}]]; g]; d = mnltr[a]; a[n_] := If[n <= 2, 1, d[n-2] ]; Array[a, 17] (* _Jean-François Alcover_, Nov 07 2017, translated from Maple *)
%Y Cf. A274760, A007548, A274804, A132039, A275594.
%K nonn,eigen
%O 1,4
%A _Johannes W. Meijer_, Aug 03 2016