login
A275576
Sums of lengths of longest (strictly) increasing subsequences of all n^n length-n lists of integers from {1,2,...,n}.
2
1, 5, 45, 524, 7450, 125992, 2472197, 55163096, 1379215566, 38203654070, 1161476316583, 38452206880034, 1376997068182450, 53036098532973584, 2186272797635061105, 96043562430904351024, 4479387734051244791950, 221051522602427094486042
OFFSET
1,2
FORMULA
a(n) = Sum_{k=1..n} k * A245667(n,k). - Alois P. Heinz, Nov 02 2018
EXAMPLE
For n = 2 there are 4 such sequences: (1,1), (1,2), (2,1), and (2,2).
The corresponding lengths of longest (strictly) increasing subsequences of these is 1, 2, 1, 1, so a(2) = 5.
CROSSREFS
Cf. A003316, which computes the same thing for permutations.
Cf. A275577, which computes the same thing for not necessarily strictly increasing subsequences.
Cf. A245667.
Sequence in context: A133305 A316705 A248586 * A365564 A189122 A062023
KEYWORD
nonn,more
AUTHOR
Jeffrey Shallit, Aug 02 2016
EXTENSIONS
a(8)-a(18) from Alois P. Heinz, Nov 02 2018
STATUS
approved