OFFSET
0,3
COMMENTS
LINKS
Daniel Poveda Parrilla, Table of n, a(n) for n = 0..500000
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022
EXAMPLE
MATHEMATICA
CoefficientList[Series[(1 - x + 7 x^2 + x^3)/((1 - x)^3 (1 + x)), {x, 0, 48}], x] (* or as defined *)
Riffle[LinearRecurrence[{3, -3, 1}, {1, 9, 33}, #], FoldList[#1 + #2 &, 1, 16 Range@ #]] &@ 25 (* Michael De Vlieger, Aug 01 2016, after Vincenzo Librandi at A081585 and Robert G. Wilson v at A069129 *)
PROG
(PARI) a(n)=(-1)^n + 2*n^2 \\ Charles R Greathouse IV, Aug 03 2016
(PARI) Vec((1-x+7*x^2+x^3)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Aug 21 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Poveda Parrilla, Aug 01 2016
STATUS
approved