The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275516 Table read by rows: list of prime triples of the form (p, p+4, p+6). 2
 7, 11, 13, 13, 17, 19, 37, 41, 43, 67, 71, 73, 97, 101, 103, 103, 107, 109, 193, 197, 199, 223, 227, 229, 277, 281, 283, 307, 311, 313, 457, 461, 463, 613, 617, 619, 823, 827, 829, 853, 857, 859, 877, 881, 883, 1087, 1091, 1093, 1297, 1301, 1303, 1423, 1427, 1429 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A prime triple is a set of three prime numbers of the form (p, p+2, p+6) or (p, p+4, p+6). Initial members p of prime triples of the form (p, p+4, p+6) are congruent to 7 or 13 (mod 30). Also called prime triples of the second kind. LINKS C. K. Caldwell, Top Twenty page, Triplet Eric Weisstein's World of Mathematics, Prime Triplet Wikipedia, Prime triple FORMULA a(3*n-2) = A022005(n). EXAMPLE The table starts: 7, 11, 13; 13, 17, 19; 37, 41, 43; ... MATHEMATICA Prime@ Range[#, # + 2] &@ PrimePi@ Select[Prime@ Range@ 240, Times @@ Boole@ PrimeQ[# + {4, 6}] > 0 &] // Flatten (* Michael De Vlieger, Aug 02 2016 *) PROG (MAGMA) &cat[[p, p+4, p+6]: p in PrimesUpTo(1423) | p mod 30 in {7, 13} and IsPrime(p+4) and IsPrime(p+6)]; CROSSREFS Cf. A022005, A270999, A271000, A275515. Sequence in context: A176173 A200327 A206546 * A084451 A091901 A072823 Adjacent sequences:  A275513 A275514 A275515 * A275517 A275518 A275519 KEYWORD nonn,tabf AUTHOR Arkadiusz Wesolowski, Jul 31 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 22:57 EST 2020. Contains 331104 sequences. (Running on oeis4.)