This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275485 Number of integer lattice points from an n X n square in R^2 centered at the origin that are closer (measured using the Euclidean metric) to the origin than to any of the four sides of the square. 2
 1, 1, 1, 1, 9, 9, 9, 9, 21, 25, 25, 25, 37, 45, 49, 49, 69, 69, 77, 81, 101, 109, 117, 117, 141, 149, 157, 165, 189, 197, 205, 213, 241, 261, 269, 269, 305, 321, 333, 341, 377, 385, 401, 413, 449, 465, 481, 489, 529, 545 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS There is a formula, but no closed form, for computing the entries of the sequence. REFERENCES N. R. Baeth, L. Luther and R. McKee, Variations on a Putnam Problem, preprint, 2016. LINKS FORMULA a(n) = (2*floor(n*(sqrt(2)-1)/2)+1)^2+4*Sum_{i=ceiling(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)} ceiling(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2). MAPLE A275485:=n->(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*add(ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2), i=ceil(-n*(sqrt(2)-1)/2)..floor(n*(sqrt(2)-1)/2)): seq(A275485(n), n=1..100); # Wesley Ivan Hurt, Sep 27 2016 PROG (PARI) a(n)=(2*floor(n*(sqrt(2)-1)/2)+1)^2+4*sum(i=ceil(-n*(sqrt(2)-1)/2), floor(n*(sqrt(2)-1)/2), ceil(n/4-i^2/n)-1-floor(n*(sqrt(2)-1)/2)); \\ Joerg Arndt, Sep 27 2016 CROSSREFS Cf. A000328. Sequence in context: A068395 A245429 A242893 * A293832 A277223 A144586 Adjacent sequences:  A275482 A275483 A275484 * A275486 A275487 A275488 KEYWORD nonn AUTHOR Nicholas Baeth, Sep 26 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 12:38 EDT 2019. Contains 323514 sequences. (Running on oeis4.)