This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275453 G.f.: 3F2([1/9, 4/9, 7/9], [2/3, 1], 729 x). 1
 1, 42, 13104, 5705700, 2870226450, 1565667525240, 899552741658480, 535848881630582520, 327799728893143306800, 204660966917426732512800, 129859500691523648952466560, 83483493583251639541209993720, 54254332317972702411364923299700, 35581785531539194815959254026276000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS "Other hypergeometric 'blind spots' for Christolâ€™s conjecture" - (see Bostan link). LINKS Gheorghe Coserea, Table of n, a(n) for n = 0..300 A. Bostan, S. Boukraa, G. Christol, S. Hassani, J-M. Maillard Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity, arXiv:1211.6031 [math-ph], 2012. FORMULA G.f.: hypergeom([1/9, 4/9, 7/9], [2/3, 1], 729*x). a(n) = 729^n*Gamma(2/3)*Gamma(1/9+n)*Gamma(4/9+n)*Gamma(7/9+n)/((n!)^2*Gamma(1/9)*Gamma(4/9)*Gamma(7/9)*Gamma(2/3+n)). - Benedict W. J. Irwin, Aug 05 2016 EXAMPLE 1 + 42*x + 13104*x^2 + 5705700*x^3 + ... MATHEMATICA a[n_] := FullSimplify[(729^n Gamma[2/3] Gamma[1/9 + n] Gamma[4/9 + n] Gamma[7/9 + n])/((n!)^2 Gamma[1/9] Gamma[4/9] Gamma[7/9] Gamma[2/3 + n])] (* Benedict W. J. Irwin, Aug 05 2016 *) PROG (PARI)  \\ system("wget http://www.jjj.de/pari/hypergeom.gpi"); read("hypergeom.gpi"); N = 12; x = 'x + O('x^N); Vec(hypergeom([1/9, 4/9, 7/9], [2/3, 1], 729*x, N)) (PARI) a(n) = round(729^n*gamma(2/3)*gamma(1/9+n)*gamma(4/9+n)*gamma(7/9+n)/((n!)^2*gamma(1/9)*gamma(4/9)*gamma(7/9)*gamma(2/3+n))) \\ Charles R Greathouse IV, Aug 05 2016 CROSSREFS Cf. A268545-A268555, A275051-A275054. Sequence in context: A289396 A159417 A289540 * A268552 A227493 A095423 Adjacent sequences:  A275450 A275451 A275452 * A275454 A275455 A275456 KEYWORD nonn AUTHOR Gheorghe Coserea, Jul 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 25 23:48 EDT 2019. Contains 322465 sequences. (Running on oeis4.)