login
A275390
Numbers n for which |n/zeta(2) - Q(n)| sets a new record, where Q(x) is the number of squarefree numbers up to x.
3
1, 2, 3, 6, 7, 15, 23, 39, 42, 43, 115, 223, 231, 239, 474, 719, 1367, 1403, 1406, 1407, 1410, 1411, 1419, 1646, 1659, 1662, 1663, 3423, 8810, 8818, 8819, 8822, 8823, 8915, 9239, 9242
OFFSET
1,2
COMMENTS
Assuming the Riemann hypothesis, Vaidya proved that Q(n) = 6*n/Pi^2 + O(n^k) for any k > 2/5.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1000
A. M. Vaidya, On the order of the error function of the square free numbers, Proc. Nat. Inst. Sci. India Part A 32 (1966), pp. 196-201.
PROG
(PARI) ct=r=0; for(n=1, 1e4, if(issquarefree(n), ct++); t=abs(n/zeta(2)-ct); if(t>r, r=t; print1(n", ")))
CROSSREFS
Sequence in context: A137604 A034901 A343149 * A109976 A011768 A052487
KEYWORD
nonn
AUTHOR
STATUS
approved