

A275366


Nearest integer to 1/erfc(n/sqrt(2)).


1



3, 22, 370, 15787, 1744278, 506797346, 390682215445, 803734397655348, 4430313100526836693, 65618063552490194383194, 2616897361902846669558232538, 281455127862349591601857362987344, 81737217988908649002650313009555641847, 64155724364921456082725604130103414484969173, 136203923668271864201168318259106163451250371423985, 782625170186363612587245135506739057551330164066640069661
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Samples from a normally distributed random variable that are at least n standard deviations away from the mean have an approximately 1ina(n) chance of occurring.


LINKS

G. C. Greubel, Table of n, a(n) for n = 1..67
Wikipedia, 689599.7 rule


FORMULA

a(n) = round( 1/erfc(n/sqrt(2)) ).


EXAMPLE

A "fivesigma" event (five standard deviations away from the mean) has a 1 in 1744278 chance of occurring. This is the requirement in particle physics for an anomaly to be recognized as a real effect, not merely a statistical fluctuation.


MATHEMATICA

Table[Round[1/Erfc[n/Sqrt[2]]], {n, 1, 16}]


PROG

(PARI) default(realprecision, 100); for(n=1, 20, print1(round(1/erfc(n/sqrt(2))), ", ")) \\ G. C. Greubel, Oct 07 2018
(MAGMA) [Round(1/Erfc(n/Sqrt(2))): n in [1..20]]; // G. C. Greubel, Oct 07 2018


CROSSREFS

Cf. probabilities of normal variables exceeding mean by n standard deviations: A239382, A239383, A239384, A239385, A239386, A239387.
Sequence in context: A099750 A219268 A259919 * A196734 A271849 A271850
Adjacent sequences: A275363 A275364 A275365 * A275367 A275368 A275369


KEYWORD

nonn


AUTHOR

Jeremy Tan, Jul 24 2016


STATUS

approved



