|
|
A275333
|
|
Triangle read by rows, the break statistic on orbital systems over n sectors.
|
|
0
|
|
|
1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, 1, 3, 3, 6, 6, 6, 3, 3, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30, 25, 15, 10, 5, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
The definition of an orbital system is given in A232500. The number of orbitals over n sectors is counted by the swinging factorial A056040.
The break index of an orbital is the sum of the positions of the up steps that are immediately followed by a step which is not an up step. This statistic is an extension of the major index statistic given in A063746 which appears as the even numbered rows here. This reflects the fact that the swinging factorial can be seen as an extension of the central binomial. The break index is different from the major index of the swinging factorial (which is in A274888).
|
|
LINKS
|
Table of n, a(n) for n=0..79.
Peter Luschny, Orbitals
|
|
EXAMPLE
|
The length of row n is floor(n^2/4 + 1). Triangle starts:
[n] [k=0,1,2,...] [row sum]
[0] [1] 1
[1] [1] 1
[2] [1, 1] 2
[3] [2, 2, 2] 6
[4] [1, 1, 2, 1, 1] 6
[5] [3, 3, 6, 6, 6, 3, 3] 30
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] 20
[7] [4, 4, 8, 12, 16, 16, 20, 16, 16, 12, 8, 4, 4] 140
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] 70
[9] [5, 5, 10, 15, 25, 30, 40, 45, 55, 55, 60, 55, 55, 45, 40, 30,25,15,10,5,5] 630
T(5, 5) = 3 because the three orbitals [1, -1, -1, 1, 0], [1, -1, 0, 1, -1] and [1, 0, -1, 1, -1] have at position 1 and position 4 an up-step which is immediately followed by a step which is not an up-step.
|
|
PROG
|
(Sage) # uses[unit_orbitals from A274709]
# Brute force counting
def orbital_break_index(n):
S = [0]*(n^2//4 + 1)
for u in unit_orbitals(n):
L = [i+1 if u[i] == 1 and u[i+1] != 1 else 0 for i in (0..n-2)]
# i+1 because u is 0-based
S[sum(L)] += 1
return S
for n in (0..9): print(orbital_break_index(n))
|
|
CROSSREFS
|
Cf. A056040 (row sum), A063746 (sub triangle), A274888 (q-swinging factorial).
Other orbital statistics: A241477 (first zero crossing), A274706 (absolute integral), A274708 (peaks), A274709 (max. height), A274710 (number of turns), A274878 (span), A274879 (returns), A274880 (restarts), A274881 (ascent).
Sequence in context: A188795 A325444 A058745 * A108393 A327342 A297828
Adjacent sequences: A275330 A275331 A275332 * A275334 A275335 A275336
|
|
KEYWORD
|
nonn,tabf
|
|
AUTHOR
|
Peter Luschny, Jul 23 2016
|
|
STATUS
|
approved
|
|
|
|