This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275293 Number of set partitions of [2n] with symmetric block size list of length four. 2
 1, 13, 171, 2306, 31795, 446349, 6357295, 91615780, 1333116522, 19555739050, 288834920011, 4291094756898, 64074785496631, 961011037139573, 14469795095794935, 218624167641077960, 3313409217150899536, 50356639055387740752, 767231549954564821746 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 2..834 Wikipedia, Partition of a set FORMULA a(n) ~ 2^(4*n-3) / (3*Pi*n). - Vaclav Kotesovec, Aug 02 2016 EXAMPLE a(3) = 13: 12|3|4|56, 13|2|4|56, 1|23|45|6, 1|23|46|5, 14|2|3|56, 1|24|35|6, 1|24|36|5, 1|25|34|6, 1|26|34|5, 15|2|3|46, 1|25|36|4, 1|26|35|4, 16|2|3|45. MAPLE a:= proc(n) option remember; `if`(n<3, [0\$2, 1, 13][n+1],       ((n-1)*(4320-23328*n+1365*n^6-11072*n^5+35733*n^4        -58702*n^3+51744*n^2)*a(n-1)-(4*(2*n-5))*(n-1)*(n-2)        *(2*n-3)*(21*n^3-55*n^2+44*n-12)*a(n-2))/((2*(n-2))*         (2*n-1)*(21*n^3-118*n^2+217*n-132)*n^2))     end: seq(a(n), n=2..30); MATHEMATICA a[2] = 1; a[3] = 13; a[n_] := a[n] = ((n-1)*(4320 - 23328*n + 1365*n^6 - 11072*n^5 + 35733*n^4 - 58702*n^3 + 51744*n^2)*a[n-1] - (4*(2*n-5))*(n-1) *(n-2)*(2*n-3)*(21*n^3 - 55*n^2 + 44*n - 12)*a[n-2])/((2*(n-2))*(2*n-1)* (21*n^3 - 118*n^2 + 217*n - 132)*n^2); Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jun 01 2018, from Maple *) CROSSREFS Bisection of column k=4 of A275281. Sequence in context: A167254 A140455 A041314 * A296585 A219021 A065544 Adjacent sequences:  A275290 A275291 A275292 * A275294 A275295 A275296 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 22 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 01:14 EDT 2019. Contains 326136 sequences. (Running on oeis4.)