This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275282 Number of set partitions of [n] with symmetric block size list. 2
 1, 1, 2, 2, 7, 9, 47, 80, 492, 985, 7197, 16430, 139316, 361737, 3425683, 9939134, 103484333, 329541459, 3747921857, 12980700318, 159811532315, 598410986533, 7902918548186, 31781977111506, 447462660895105, 1920559118957107, 28699615818386524, 130838216971937408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..400 Wikipedia, Partition of a set FORMULA a(n) = Sum_{k=0..n} A275281(n,k). EXAMPLE a(3) = 2: 123, 1|2|3. a(4) = 7: 1234, 12|34, 13|24, 14|23, 1|23|4, 1|24|3, 1|2|3|4. a(5) = 9: 12345, 12|3|45, 13|2|45, 1|234|5, 1|235|4, 14|2|35, 1|245|3, 15|2|34, 1|2|3|4|5. MAPLE b:= proc(n, s) option remember; `if`(n>s,       binomial(n-1, n-s-1), 1) +add(binomial(n-1, j-1)*       b(n-j, s+j) *binomial(s+j-1, j-1), j=1..(n-s)/2)     end: a:= n-> b(n, 0): seq(a(n), n=0..30); MATHEMATICA b[n_, s_] := b[n, s] = If[n > s, Binomial[n-1, n-s-1], 1] + Sum[Binomial[n - 1, j - 1]*b[n - j, s + j]*Binomial[s + j - 1, j - 1], {j, 1, (n-s)/2}]; a[n_] := b[n, 0]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 27 2018, from Maple *) CROSSREFS Row sums of A275281. Sequence in context: A267214 A107386 A095021 * A101372 A133374 A267446 Adjacent sequences:  A275279 A275280 A275281 * A275283 A275284 A275285 KEYWORD nonn AUTHOR Alois P. Heinz, Jul 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 18:46 EST 2019. Contains 320222 sequences. (Running on oeis4.)